



AIK-08-0584

November 20, 2008

Project Number 00979

via U.S. Mail

Beverly Washington Naval Air Station Building 135 P.O. Box 30 Jacksonville, FL 32212

Reference: CLEAN Contract No. N62467-04-D-0055

Contract Task Order No. 0095

Subject: Site Assessment Report for Sigsbee Marina, Rev. 0, Naval Air Station,

Key West, Florida

Dear Ms. Washington:

I have enclosed a "Living CD" containing the PDF file for the Site Assessment Report for Sigsbee Marina, Rev. 0, Naval Air Station, Key West, Florida. This file is being sent via U.S. Mail to meet TtNUS's contractual obligation under CTO 0095. The contents of this report were discussed and conditionally approved by the NAS Key West Partnering Team during its October 2008 meeting. Thus, I am not expecting any comments on this document.

Please call me at (803) 641-4943, if you have any questions regarding the enclosed document.

Sincerely,

C. M. Bryan Project Manager

CMB:spc

c: Ms. Debra M. Humbert (Cover Letter Only)

Mr. M. Perry/File File 00979-7.2.1

### Comprehensive Long-term Environmental Action Navy

**CONTRACT NUMBER N62467-04-D-0055** 



Rev. 0 11/18/08

### Site Assessment Report for Sigsbee Marina

Naval Air Station Key West Key West, Florida

Contract Task Order 0095

November 2008



NAS Jacksonville Jacksonville, Florida 32212-0030

#### SITE ASSESSMENT REPORT FOR SIGSBEE MARINA

### NAVAL AIR STATION KEY WEST KEY WEST, FLORIDA

### COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command
Southeast
NAS Jacksonville
Jacksonville, FL 32212-0030

Submitted by:
Tetra Tech NUS
661 Andersen Drive
Foster Plaza 7
Pittsburgh, Pennsylvania 15220

#### CONTRACT NUMBER N62467-04-D-0055 CONTRACT TASK ORDER 0095

**NOVEMBER 2008** 

PREPARED UNDER THE SUPERVISION OF: APPROVED FOR SUBMITTAL BY:

CHUCK BRYAN
TASK ORDER MANAGER
TETRA TECH NUS, INC.
AIKEN, SOUTH CAROLINA

DEBRA M. HUMBERT PROGRAM MANAGER TETRA TECH NUS, INC.

PITTSBURGH, PENNSYLVANIA

#### **TABLE OF CONTENTS**

| SECTION      | <u>NC</u>      |                                        | <u>PAGE</u> |
|--------------|----------------|----------------------------------------|-------------|
| ACRO         | NYMS/A         | ABBREVIATIONS                          | vii         |
|              |                | SUMMARY                                |             |
| 1.0          | _              | DESCRIPTION AND BACKGROUND INFORMATION | _           |
| 1.0          | 11             | SITE LOCATION AND CONDITIONS           |             |
|              | 1.2            | SITE HISTORY                           |             |
| 2.0          |                | ASSESSMENT METHODOLOGY                 |             |
| 2.0          | 2.1            | QUALITY ASSURANCE                      |             |
|              | 2.2            | DPT INVESTIGATION                      |             |
|              | 2.2.1          | Soil Core Sampling                     |             |
|              | 2.2.2          | Soil Headspace Screening               |             |
|              | 2.3            | SOIL SAMPLING PROGRAM                  | 2-2         |
|              | 2.4            | GROUNDWATER SAMPLING PROGRAM           | 2-3         |
|              | 2.4.1          | Monitoring Well Locations              | 2-3         |
|              | 2.4.2          | Monitoring Well Installation           |             |
|              | 2.4.3          | Monitoring Well Development            |             |
|              | 2.4.4          | Monitoring Well Sampling               |             |
| 3.0          | GEOL           | OGY AND HYDROGEOLOGY                   | -           |
|              | 3.1            | SITE STRATIGRAPHY                      |             |
|              | 3.2            | POTABLE WATER SUPPLY WELL SURVEY       |             |
|              | 3.3            | SURFACE WATER                          |             |
| 4.0          |                | ASSESSMENT RESULTS                     |             |
|              | 4.1            | SOIL ASSESSMENT RESULTS                |             |
|              | 4.1.1          | DPT Headspace Screening                |             |
|              | 4.1.2          | Laboratory Soil Sample Analysis        |             |
|              | 4.2            | GROUNDWATER ASSESSMENT RESULTS         |             |
|              | 4.2.1<br>4.2.2 | DPT Assessment                         |             |
|              |                | Monitoring Well Sampling               |             |
| 5.0          |                | NVESTIGATION SUMMARY                   |             |
|              | 5.1            | SOURCE OF HYDROCARBONS                 |             |
|              | 5.2<br>5.3     | SITE CONDITIONSSOIL ASSESSMENT         |             |
|              | 5.4            | GROUNDWATER ASSESSMENT                 |             |
|              | •              |                                        |             |
| 6.0          |                | LUSIONS AND RECOMMENDATION             |             |
| REFER        | RENCES         | 5                                      | R-1         |
|              |                |                                        |             |
| A DDES       | IDICES         |                                        |             |
| <u>APPEN</u> | IDICE2         |                                        |             |

- A B FIELD LOGS FORMS
- LABORATORY ANALYTICAL REPORTS

#### **TABLE OF CONTENTS (CONTINUED)**

#### **LIST OF TABLES**

| NUM | <u>BER</u>                                                  | PAGE |
|-----|-------------------------------------------------------------|------|
| 2-1 | Monitoring Well Construction Details                        | 2-5  |
| 4-1 | Soil Headspace Analytical Results                           |      |
| 4-2 | Groundwater DPT Screening Analytical Results, February 2008 |      |
| 4-3 | Groundwater Monitoring wells Analytical Results, May 2008   | 4-8  |

#### **LIST OF FIGURES**

| NUME | <u>BER</u>                                              | PAGE |
|------|---------------------------------------------------------|------|
| 1-1  | Regional Map                                            | 1-2  |
| 1-2  | Site Vicinity Map                                       | 1-3  |
| 2-1  | Soil Boring Locations                                   | 2-6  |
| 2-2  | Monitoring Well Locations                               | 2-7  |
| 2-3  | Monitoring Well Detail                                  | 2-8  |
| 4-1  | Soil Headspace Readings, February 2008                  |      |
| 4-2  | Soil Analytical Results, February 2008                  | 4-11 |
| 4-3  | Groundwater Screening Analytical Results, February 2008 |      |
| 4-4  | Groundwater Analytical Results May 2008                 | 4-13 |

#### **ACRONYMS/ABBREVIATIONS**

ABB Environmental Services, Inc.

A/G Aboveground

B&RE Brown and Root Environmental, Inc.

bls Below land surface

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CoC Contaminant of Concern
CTO Contract Task Order
DPT Direct Push Technology
DRO Diesel Range Organic

DTW Depth to Water
EDB Ethylene Dibromide

EPA United States Environmental Protection Agency

FAC Florida Administrative Code

FDEP Florida Department of Environmental Protection

FID Flame Ionization Detector

FKAA Florida Keys Aqueduct Authority

FL-PRO Florida Petroleum Residual Organics

GAC Granular-activated Carbon
GAG Gasoline Analytical Group

GCTL Groundwater Cleanup Target Level

HSA Hollow-stem Auger

HSTAIC Harry S. Truman Animal Import Center

ID Inside Diameter

IDW Investigation Derived Waste

IR Installation RestorationK Hydraulic ConductivityKAG Kerosene Analytical Group

μg/L
 mg/kg
 mg/L
 Milligrams per Kilogram
 mg/L
 Milligrams per Liter
 msl
 Mean Sea Level

MTBE Methyl tertiary-butyl ether

NAS Naval Air Station

OVA Organic Vapor Analyzer

PAH Polynuclear Aromatic Hydrocarbon

PE Polyethylene
ppm Parts per Million
PVC Polyvinyl Chloride

RCRA Resource Conservation and Recovery Act

SAR Site Assessment Report
SCTL Soil Cleanup Target Level

SOP Standard Operating Procedure

NAVFACE SE Naval Facilities Engineering Command, Southeast

SWL Static Water Level

SWMU Solid Waste Management Unit

TOC Top of Casing

TOX Total Organic Halide

TRPH Total Recoverable Petroleum Hydrocarbon

TtNUS Tetra Tech NUS, Inc.

UST Underground Storage Tank
VOC Volatile Organic Compound

#### **EXECUTIVE SUMMARY**

Tetra Tech NUS, Inc. (TtNUS) has been authorized by Naval Facilities Engineering Command, Southeast (NAVFAC ES) to prepare a Site Assessment Report (SAR) for the Sigsbee Marina site at Naval Air Station (NAS) Key West, Florida. This SAR has been prepared to evaluate soil and groundwater conditions in the vicinity of a leak from an underground fuel line that supplied diesel fuel to a pump island and to investigate further 'aged' petroleum products discovered in the subsurface.

#### **Site Assessment Activities**

The following site assessment activities were conducted by TtNUS:

- Reviewed available Navy documents to collect historical information about the site, evaluate public
  and private potable wells, locate utility line areas, locate nearby surface water bodies, and assess
  surface hydrology and drainage,
- Conducted an assessment of soil and groundwater at the site using Direct Push Technology (DPT) methods to advance twenty-two borings and headspace screening on soil samples
- Collected soil samples from three locations for laboratory analysis of volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), and total recoverable petroleum hydrocarbons (TRPH),
- Collected groundwater samples from DPT boreholes for VOC and PAH analysis,
- Installed five shallow monitoring wells and one deep monitoring well to assess the horizontal and vertical extent of contamination,
- Collected groundwater samples from the permanent monitoring wells for laboratory analysis of VOCs.
   PAH and TRPH.

#### **Conclusions**

The following conclusions were drawn based on site assessment activities:

- Concentrations of petroleum contaminants detected in the soil samples collected for this investigation were below Soil Cleanup Target Levels (SCTLs) for Residential Direct Exposure, as specified in the Florida Administrative Code (FAC) Chapter 62-777, Table II.
- Free product was not observed during the site assessment activities.

- Concentrations of methyl tertiary-butyl ether (MTBE) and acrylonitrile were detected slightly above their respective Groundwater Cleanup Target Levels (GCTLs). All other contaminants of concern (CoCs) in site groundwater were below the GCTLs, as specified in FAC Chapter 62-777, Table I
- Prior IRA/source removal activities appears to be effective and only a very minimal residual contaminant concentration exist in a small area of the site

#### **Recommendation**

Based on the chemical data presented in this SAR and the requirements of Chapter 62-770, FAC, TtNUS recommends that three additional monitoring events be conducted at the site to verify groundwater analytical results. All six monitoring wells should be purged and sampled for VOCs, PAHs and TRPH as in the initial round of sampling.

Due to on-going construction activities of the seawall and its close proximity to the site, top of casing (TOC) elevations could not be obtained and aquifer characteristics could not be evaluated. It is recommended that during the next monitoring event, TOC elevations and groundwater levels be obtained from the all monitoring wells to determine the groundwater flow direction and water table gradient at the site. This data along with slug test data collected on Boca Chica Key can be used to estimate the hydraulic conductivity and transmissivity for the shallow surficial aquifer. Groundwater flow velocity at the site can also be calculated by estimates from the hydraulic conductivity and gradient data. In addition, an estimate of the tidal fluctuation at the site should be obtained during this event.

#### 1.0 SITE DESCRIPTION AND BACKGROUND INFORMATION

TtNUS under contract with NAVFAC SE, is submitting this SAR documenting the findings of the site assessment performed at the Sigsbee Marina at Naval Air Station (NAS) Key West, Florida. This Site Assessment Report (SAR) was prepared on behalf of the Navy under Contract No. N62467-04-D-0055, Contract Task Order (CTO) 0095, and summarizes the environmental assessment activities conducted by TtNUS.

#### 1.1 SITE LOCATION AND CONDITIONS

The site lies within Sections 28 and 29, Township 67 South, Range 25 East. Figure 1-1 shows the site location on the United States Geological Survey (USGS) topographic quadrangle map. Sigsbee Marina is located on Dredgers Key (commonly referred to as "Sigsbee" Key) within the Key West Naval Air Station, Key West, Monroe County, Florida (Figure 1-2). The Marina is currently an operating marina serving military personnel. The topography of the site is relatively flat and is composed mostly of fill material with some areas containing mangroves. The marina forms a small cove which is open to Florida Bay.

#### 1.2 SITE HISTORY

On January 25, 2007 petroleum hydrocarbons were found following a fuel leak at the south end of the pump island. Professional Service Industries (PSI) performed a brief assessment of the extent of petroleum-impacted soil and groundwater and then removed and disposed of approximately 1.4 cubic yards of contaminated soil. Soil vapor screening and soil sampling from the excavation walls confirmed the completeness of the source removal activities (PSI 2007). PSI also installed a groundwater test pit while removing these contaminated soils. Within approximately 2 hours of removing free product, the test pit had recharged with groundwater containing heavy aromatic (degraded and apparently well-aged) fuels on top. The test pit was filled because visual evidence indicated the remaining free product was from historical releases rather than a recent release.





#### 2.0 SITE ASSESSMENT METHODOLOGY

Site assessment activities were carried out at Sigsbee Marina in February and May 2008. Initially, a DPT investigation was conducted between February 20 and 21, 2008 to define the horizontal and vertical extent of contamination at the site. The DPT borings were installed around the pump islands and concentrically outward to assess the extent of soil and groundwater contamination. Soil samples were collected during this investigation for headspace screening and laboratory analysis. Groundwater samples were also collected for screening during the DPT event for laboratory analysis. After the results of the initial investigation were evaluated, monitoring wells were installed at the site between May 7 and 8, 2008. Groundwater samples were collected for off-site laboratory analysis on May 12, 2008. The results of the site assessment are discussed in Sections 3.0 and 4.0.

#### 2.1 QUALITY ASSURANCE

The site assessment investigation was conducted in accordance with the Standard Operating Procedures (SOPs) prescribed by the Florida Department of Environmental Protection (FDEP) (DEP-SOP-001/01). Equipment used to advance the soil borings, install monitoring wells, and collect soil or groundwater samples was decontaminated prior to and following each use. Organic vapor measurements were made with a MiniRae 2000 Photo Ionization Detector (PID). Prior to each day's activities, the PID was field calibrated in accordance with manufacturer directions.

Groundwater screening and monitoring well samples were collected in pre-preserved containers obtained from Accutest Laboratories, Orlando, Florida. Quality control samples (i.e., duplicates, equipment blanks, and trip blanks) were prepared and submitted to the laboratory. Sampling activities were documented in a site-specific field logbook; samples were transmitted under chain-of-custody protocols to the laboratory.

#### 2.2 DPT INVESTIGATION

The soil screening investigation was conducted at Sigsbee Marina to evaluate the extent to which petroleum, previously detected in samples, had contaminated site soils. The investigation was conducted by installing a total of twenty-two soil borings (SB-1 through SB-22), using DPT (Figure 2-1). Soil samples from the borings were collected for headspace screening with a PID. During the DPT field investigation, each soil boring was advanced below the water table in order to collect groundwater samples for laboratory analysis. Groundwater screening activities are discussed in Section 2.5.1.

#### 2.2.1 Soil Core Sampling

Soil borings for the preliminary assessment were advanced using DPT. The borings were installed by a Geoprobe 6620DT drill rig. A 2-inch diameter 5-foot core barrel lined with a polypropylene sleeve was used

to collect the soil cores from discrete depths. Onlitic limestone was encountered in the soil borings. Groundwater was typically encountered at approximately 5 feet bls. The soil borings were advanced approximately 6 feet into the subsurface to an approximate total depth of 6 feet. The site geologist logged the soil properties, including texture, color, and soil moisture for each soil core and noted whether staining or odors were present. Soil boring logs are provided in Appendix A.

#### 2.2.2 Soil Headspace Screening

Soil samples were collected at the 0-2, 2-4, and 4-6 foot intervals from each location for headspace screening in accordance with the procedures outlined in Section 62-770.200, FAC. At one location, SB-21, the boring was advanced to 8 feet and a soil sample collected from the 6-8 foot sample. From each interval, two 16-ounce glass jars were half-filled with the soil sample, sealed with aluminum foil, and labeled. The soil samples were allowed to equilibrate to ambient air temperature. The PID response to total headspace organic vapors was measured by inserting the PID probe through the foil sample cover and recording the highest instrument reading.

#### 2.2.3 <u>DPT Groundwater Screening</u>

During site assessment activities, groundwater samples were collected from select borings advanced during the DPT screening investigation. Groundwater samples were collected from borings SB-02, 03, -07, -08, -09, -11 and -14. These borings were selected based on their elevated PID readings in the smear zone and their placement in a possible path of migration of contaminants.

The samples were collected by inserting a length of polyethylene (PE) tubing to the bottom of the well screen. The PE tubing was connected to a peristaltic pump and several screen volumes were removed from the temporary well to reduce the amount of suspended sediment in the groundwater samples. After sufficient purging, groundwater samples were collected by directing the peristaltic pump discharge directly into bottles provided by the laboratory.

Groundwater screening samples were packaged and shipped to Accutest Laboratories in Orlando, Florida for VOC, PAH and TRPH analyses.

#### 2.3 SOIL SAMPLING PROGRAM

Three soil samples were collected for fixed-base laboratory analysis to confirm results of the headspace screening. The soil samples were analyzed for VOCs by SW-846 Method 8260, PAHs by SW-846 Method 8310, and TRPH by the Florida Petroleum Residual Organics (FL-PRO) method. The validated analytical report is included in Appendix B.

#### 2.4 GROUNDWATER SAMPLING PROGRAM

Following the DPT investigation, five shallow (13-15 feet bls) monitoring wells and one deep (25 feet bls) monitoring well were installed at the site. These wells were used to collect groundwater samples.

#### 2.4.1 <u>Monitoring Well Locations</u>

Screening data obtained during the DPT investigation were evaluated to determine the optimum number and location for the wells (Figure 2-2).

#### 2.4.2 <u>Monitoring Well Installation</u>

The monitoring well borings were drilled with a truck-mounted drill rig and 4.25-inch inside diameter (ID) hollow-stem auger. Each well was constructed of 2-inch-ID, flush-threaded, schedule 40 polyvinyl chloride (PVC) riser, and 0.010-inch-slot well screen with a 6-inch point cap. Five shallow wells were installed to approximately 12 to 15 feet bls with a 10-foot screen. The deeper well was installed to a depth of 25 feet bls with a 5-foot screen. The annulus around each well was filled to approximately 1 foot above the top of the screen with U.S. Standard Sieve size 20/30 silica sand, followed by a 0.5 foot 30/65 fine sand seal. The remainder of the annulus was grouted to the surface. Each well was secured with a locking, watertight cap within a steel, 8-inch-diameter steel manhole. The manhole was set in a 24-inch-square concrete apron finished slightly above grade. A typical shallow well installation is illustrated on Figure 2-3. Monitoring well construction details are summarized in Table 2-1 and the monitoring well completion diagrams are provided in Appendix A.

#### 2.4.3 Monitoring Well Development

Each monitoring well was developed using a diaphragm or centrifugal pump. The wells were developed until the purge water became clear, typically when approximately 20 gallons had been removed.

#### 2.4.4 Monitoring Well Sampling

Samples were collected from site monitoring wells to evaluate groundwater quality in the shallow surficial aquifer. These samples were collected using the low-flow quiescent purging and sampling method. New Teflon® tubing was installed in each well for groundwater sampling. Approximately three to five well volumes were removed from each well using a peristaltic pump and Teflon® tubing. Temperature, pH, specific conductance, dissolved oxygen, and turbidity were monitored while the wells were purged. The field measurements, well purge volumes, and depths to groundwater were recorded during well purging and at the time of sample collection. Groundwater sample log sheets are provided in Appendix A.

Groundwater samples were analyzed for VOCs (SW-846 Method 8260), PAHs (SW-846 Method 8310), and TRPH (FL-PRO). The groundwater samples were placed on ice and shipped to Accutest Laboratories in Orlando, Florida, for analysis. Groundwater analytical validation reports are presented in Appendix B.

#### **TABLE 2-1**

#### MONITORING WELL CONSTRUCTION DETAILS **SIGSBEE MARINA** SITE ASSESSMENT REPORT **NAVAL AIR STATION KEY WEST, FLORIDA**

| Well<br>No. | Date<br>Installed | Drilling<br>Method | Total Well<br>Depth<br>(Feet) | Screened<br>Interval<br>(Feet bls) | Well<br>Diameter<br>(Inches) | Lithology of<br>Screened<br>Interval |
|-------------|-------------------|--------------------|-------------------------------|------------------------------------|------------------------------|--------------------------------------|
| SM-MW-04    | 5/6/08            | HSA                | 15                            | 2-15                               | 2                            | Oolitic<br>limestone                 |
| SM-MW-05    | 5/6/08            | HSA                | 15                            | 2-15                               | 2                            | Oolitic<br>limestone                 |
| SM-MW-06    | 5/8/08            | HSA                | 13                            | 2-13                               | 2                            | Oolitic<br>limestone                 |
| SM-MW-07    | 5/7/08            | HSA                | 13                            | 2-13                               | 2                            | Oolitic<br>limestone                 |
| SM-MW-08    | 5/7/08            | HSA                | 13                            | 2-13                               | 2                            | Oolitic<br>limestone                 |
| SM-MW-09D   | 5/7/08            | HSA                | 25                            | 20-25                              | 2                            | Oolitic<br>limestone                 |

TOC elevations surveyed by Island Surveying in May 2004. HSA Hollow-stem auger TOC Top of casing Not Applicable NA bls Below land surface







#### 3.0 GEOLOGY AND HYDROGEOLOGY

Data collected during the site assessment were used to evaluate geologic and hydrogeologic conditions at the site that may influence the fate and transport of hydrocarbons released to the environment. Lithology and stratigraphy were described for the shallow surficial aquifer at the site.

The Lower Keys, which are within the southern geomorphic division of Florida, were formed during the Pleistocene Era. The Lower Keys are known as the "Oolitic Keys," a reference to the Oolitic Member of the Miami Limestone. The Oolitic Member consists of variably sandy, fossiliferous limestone composed primarily of ooids. The Oolitic Member is divided into two lithofacies: an ooid calcarenite and an oomoldic-recrystalline facies. The Key Largo Limestone underlies the Miami Limestone. The Key Largo Limestone is a light-gray to light-yellow coralline limestone comprised of coral heads encased in a matrix of calcarenite. In the Key West area, the Miami Limestone is approximately 27 feet thick and the Key Largo limestone is more than 270 feet thick [Brown & Root Environmental (B&RE), 1997].

The surficial aquifer system in the lower Keys is an unconfined, porous, highly permeable solution-riddled unit, as described above. Rainfall recharge seeps quickly into the ocean and saltwater intrusion is common. The water table ranges in depth from less than 1 foot to approximately 2.5 feet below mean sea level (msl) and fluctuates diurnally due to tidal effects. Water in the surficial aquifer is non-potable.

Dredgers Key is in the southeastern Coastal Plain physiographic province. Pleistocene marine reefs control the topography of the Coastal Plain in the Florida Keys [ABB Environmental Services, Inc. (ABB), 1995]. The topography of Dredgers Key is generally flat. Average land surface elevations are less than 5 feet above msl. Drainage on the Key is toward the Atlantic Ocean and Gulf of Mexico, which completely surround the Key.

#### 3.1 SITE STRATIGRAPHY

Interpretation of site lithology and stratigraphy was based on visual examination of soil cores collected from soil borings during the DPT investigation and drill cuttings observed during the monitoring well installation.

The site surface was unpaved gravel, underlain by light-brown-to-beige-to-white, sandy, oolitic limestone. The vicinity of the pump island had approximately a foot of fill material comprised of course-grained, poorly sorted, moderately consolidated with pebbles, cobbles and shell fragments. The oolitic lithology extends to at least 25 feet bls, which was the maximum depth drilled during the investigation. Due to the homogeneity of the subsurface, no lithologic cross-section was constructed. Soil boring logs are included in Appendix A.

#### 3.2 POTABLE WATER SUPPLY WELL SURVEY

No freshwater public or registered domestic wells are in use on NAS Key West (ABB, 1995). Some residences in Key West have wells that withdraw water from the surficial aquifer for non-potable uses. The Florida Keys Aqueduct Authority (FKAA) operates and maintains the Florida Keys Aqueduct, which supplies potable water to all of the Keys. This water is drawn from wells near Florida City in southeastern Dade County. It is pumped 130 miles through a water main that parallels U.S. Highway 1 and terminates in Key West. The Monroe County Health Department recognizes the public water supply as the only potable water source available in Key West.

Alternative sources of potable water and non-potable water used in the Keys include private cisterns, private wells utilizing reverse osmosis, home desalination systems, and bottled water. The number of people who may be using water from these alternative sources is unknown. The best estimate of the number of people using local groundwater for non-potable domestic purposes is less than 500.

#### 3.3 SURFACE WATER

The Marina is separated from the waters of Florida Bay by a retaining sea wall located along the length of the marina. The marina is situated in a protected cove formed by surrounding marsh and land areas. The open waters of the Florida Bay are located approximately 300 feet to the north.

#### 4.0 SITE ASSESSMENT RESULTS

Soil samples were collected at Sigsbee Marina for headspace screening and laboratory analysis. The headspace screening results collected from unsaturated samples were evaluated following the appropriate Section 62-770.200, FAC guidelines. Groundwater samples were collected at Sigsbee Marina during the groundwater assessment. The results of groundwater analyses were compared to the FDEP GCTLs, listed in Chapter 62-777, FAC Table I.

#### 4.1 SOIL ASSESSMENT RESULTS

#### 4.1.1 DPT Headspace Screening

A DPT investigation was conducted to estimate the extent of petroleum-contaminated soil at the site. Vadose and smear zone soils were evaluated for headspace screening. A summary of soil PID screening results is presented in Table 4-1. Soil boring locations and vapor readings are depicted on Figure 4-1.

Soils with a significant headspace screening response (>10 ppm) were encountered only in the smear zone of 4-6 foot at four borings (SB-01, -02, -07, -11) advanced during the DPT investigation. All screening responses in the vadose zone were below 10 ppm (Figure 4-1).

#### 4.1.2 <u>Laboratory Soil Sample Analysis</u>

During the DPT investigation, three soil samples were collected for analysis by a fixed-base laboratory. The samples were collected from locations SB-09, -15 and -21 as shown in Figure 4-1 and were analyzed for VOCS, PAH, and TRPH.

Contaminants were not detected above their respective SCTLs in any of the soil samples collected. Laboratory analytical reports can be found in Appendix B.

#### 4.2 GROUNDWATER ASSESSMENT RESULTS

#### 4.2.1 DPT Assessment

Groundwater screening samples were collected during the DPT investigation in February 2008 from select borings (SB-02, -03, -07, -08, -09, -11 and -14). Results of the investigation are depicted on Figure 4-3. Groundwater samples were collected and analyzed for VOCs, PAH, and TRPH. Results are presented in Table 4-3. Petroleum contaminants were detected in several of the samples. An exceedance of naphthalene was detected in KWSM-DPT-02 at a concentration of 16.6  $\mu$ g/L, above its GCTL of 14  $\mu$ g/L. All other detections in the samples collected were below GCTLs.

#### 4.2.2 Monitoring Well Sampling

Groundwater samples were collected from the six on-site monitoring wells (KWSMMW-04, -05, -06, -07 -08, and -09D) in May 2008 and analyzed at an off-site laboratory for VOCs, PAHs and TRPH. Figure 2-2 shows the six monitoring well locations. Detections are reported in Table 4-4. The validated analytical reports can be found in Appendix B.

During the May 2008 sampling event, the VOC compounds acrylonitrile, benzene, chloroform, chloromethane, ethylbenezene, toluene, total xylenes and MTBE were detected in Sigsbee Marina monitoring wells. MTBE was detected in KWSMMW-07 at 20.9  $\mu$ g/L, above its GCTL of 20  $\mu$ g/L. MTBE was detected in all wells sampled, with concentrations ranging from 6  $\mu$ g/L to 12.8  $\mu$ g/L. However levels were below GCTLs. Acrylonitrile was also detected above its GCTL of 0.06  $\mu$ g/L at 2.2  $\mu$ g/L in KWSMMW-08. It was not detected in any of the other wells sampled. All other detected VOC compounds were below their respective GCTLs.

The PAHs, 1-and 2- methylnaphthalene and naphthalene were detected in KWSMMW-08 and KWSMMW-09D, while fluorine, fluoranthene and phenanthrene were detected in KWSMMW-06. All PAH detections were below GCTLs and were relatively low. The highest concentration of a PAH compound, naphthalene, was detected in SMMW-08 at  $1.2 \,\mu g/L$ . The GCTL of naphthalene is  $14 \,\mu g/L$ .

TRPH was detected in five of the Sigsbee Marina monitoring wells and ranged in concentration from 201  $\mu$ g/L in KWSMMW-09D to 429  $\mu$ g/L in KWSMMW-07. All detected concentrations of TRPH were below the GCTL of 5,000  $\mu$ g/L.

### SOIL HEADSPACE ANALYTICAL RESULTS SIGSBEE MARINA SUPPLEMENTAL SITE ASSESSMENT REPORT NAVAL AIR STATION KEY WEST, FLORIDA PAGE 1 OF 3

| LOCATION<br>NO. | DATE<br>COLLECTED | DEPTH<br>TO<br>WATER<br>(feet bls) | SAMPLE<br>INTERVAL<br>(feet bls) | PID<br>READING<br>(ppm) | COMMENTS              |
|-----------------|-------------------|------------------------------------|----------------------------------|-------------------------|-----------------------|
| SB-01           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-01           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-01           | 2/20/08           | 5                                  | 4-6                              | 28.9                    | Strong petroleum odor |
| SB-02           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-02           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-02           | 2/20/08           | 5                                  | 4-6                              | 750                     | Strong petroleum odor |
| SB-03           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-03           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-03           | 2/20/08           | 5                                  | 4-6                              | 18.5                    | Petroleum odor        |
| SB-04           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-04           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-04           | 2/20/08           | 5                                  | 4-6                              | 0                       |                       |
| SB-05           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-05           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-05           | 2/20/08           | 5                                  | 4-6                              | 0                       |                       |
| SB-06           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-06           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-06           | 2/20/08           | 5                                  | 4-6                              | 0                       |                       |
| SB-07           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-07           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-07           | 2/20/08           | 5                                  | 4-6                              | 169                     | Strong petroleum odor |
| SB-08           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-08           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-08           | 2/20/08           | 5                                  | 4-6                              | 8.2                     | Petroleum odor        |
| SB-09           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-09           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-09           | 2/20/08           | 5                                  | 4-6                              | 9.2                     | Petroleum odor        |
| SB-10           | 2/20/08           | 5                                  | 0-2                              | 0                       |                       |
| SB-10           | 2/20/08           | 5                                  | 2-4                              | 0                       |                       |
| SB-10           | 2/20/08           | 5                                  | 4-6                              | 0                       |                       |

# SOIL HEADSPACE ANALYTICAL RESULTS FEBRUARY 2008 SIGSBEE MARINA SUPPLEMENTAL SITE ASSESSMENT REPORT NAVAL AIR STATION KEY WEST, FLORIDA PAGE 2 OF 3

| LOCATION<br>NO. | DATE<br>COLLECTED | DEPTH<br>TO<br>WATER<br>(feet bls) | SAMPLE<br>INTERVAL<br>(feet bls) | PID<br>READING<br>(ppm) | COMMENTS       |
|-----------------|-------------------|------------------------------------|----------------------------------|-------------------------|----------------|
| SB-11           | 2/20/08           | 5                                  | 0-2                              | 0                       |                |
| SB-11           | 2/20/08           | 5                                  | 2-4                              | 0                       |                |
| SB-11           | 2/20/08           | 5                                  | 4-6                              | 151                     | Petroleum odor |
| SB-12           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-12           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-12           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-13           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-13           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-13           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-14           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-14           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-14           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-15           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-15           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-15           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-16           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-16           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-16           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-17           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-17           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-17           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-18           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-18           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-18           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-19           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-19           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-19           | 2/21/08           | 5                                  | 4-6                              | 0                       |                |
| SB-20           | 2/21/08           | 5                                  | 0-2                              | 0                       |                |
| SB-20           | 2/21/08           | 5                                  | 2-4                              | 0                       |                |
| SB-20           | 2/21/08           | 5                                  | 4-6                              | 0.3                     |                |

# SOIL HEADSPACE ANALYTICAL RESULTS FEBRUARY 2008 SIGSBEE MARINA SUPPLEMENTAL SITE ASSESSMENT REPORT NAVAL AIR STATION KEY WEST, FLORIDA PAGE 3 OF 3

| LOCATION<br>NO. | DATE<br>COLLECTED | DEPTH<br>TO<br>WATER<br>(feet bls) | SAMPLE<br>INTERVAL<br>(feet bis) | PID<br>READING<br>(ppm) | COMMENTS |
|-----------------|-------------------|------------------------------------|----------------------------------|-------------------------|----------|
| SB-21           | 2/21/08           | 5                                  | 0-2                              | 0                       |          |
| SB-21           | 2/21/08           | 5                                  | 2-4                              | 0                       |          |
| SB-21           | 2/21/08           | 5                                  | 4-6                              | 0                       |          |
| SB-21           | 2/21/08           | 5                                  | 6-8                              | 0                       |          |
| SB-22           | 2/21/08           | 5                                  | 0-2                              | 0                       |          |
| SB-22           | 2/21/08           | 5                                  | 2-4                              | 0                       |          |
| SB-22           | 2/21/08           | 5                                  | 4-6                              | 0                       |          |

Notes: bls = Below land surface

ppm = Parts per million
NS = Not sampled

# GROUNDWATER DPT SCREENING ANALYTICAL RESULTS, FEBRUARY 2008 SIGSBEE MARINA SITE ASSESSMENT REPORT NAVAL AIR STATION KEY WEST, FLORIDA PAGE 1 OF 2

|                 |                             |        |       | QUAL <sup>(a</sup> |      |
|-----------------|-----------------------------|--------|-------|--------------------|------|
| LOCATION ID     | PARAMETER                   | RESULT | GCTL  | )                  | UNIT |
| KWSM-DPT-02     | 1-METHYLNAPHTHALENE         | 12.9   | 28    |                    | μg/L |
| KWSM-DPT-02     | 2-METHYLNAPHTHALENE         | 8.6    | 28    |                    | μg/L |
| KWSM-DPT-02     | BENZENE                     | 0.33   | 1     | J                  | μg/L |
| KWSM-DPT-02     | ETHYLBENZENE                | 2.8    | 700   |                    | μg/L |
| KWSM-DPT-02     | FLUORENE                    | 0.27   | 280   | J                  | μg/L |
| KWSM-DPT-02     | METHYL TERTIARY-BUTYL ETHER | 1.4    | 20    |                    | μg/L |
| KWSM-DPT-02     | NAPHTHALENE                 | 16.6   | 14    |                    | μg/L |
| KWSM-DPT-02     | TOTAL XYLENES               | 33.6   | 10000 |                    | μg/L |
| KWSM-DPT-02     | TRPH (C08-C40)              | 1.35   | 5     |                    | mg/L |
| KWSM-DPT-03     | METHYL TERT-BUTYL ETHER     | 0.8    | 20    | J                  | μg/L |
| KWSM-DPT-07-AVG | 1-METHYLNAPHTHALENE         | 1.5    | 28    |                    | μg/L |
| KWSM-DPT-07-AVG | 2-METHYLNAPHTHALENE         | 0.36   | 28    | J                  | μg/L |
| KWSM-DPT-07-AVG | BENZENE                     | 0.63   | 1     | J                  | μg/L |
| KWSM-DPT-07-AVG | ETHYLBENZENE                | 3.9    | 700   |                    | μg/L |
| KWSM-DPT-07-AVG | METHYL TERTIARY-BUTYL ETHER | 4      | 20    |                    | μg/L |
| KWSM-DPT-07-AVG | NAPHTHALENE                 | 0.61   | 14    | J                  | μg/L |
| KWSM-DPT-07-AVG | TOLUENE                     | 0.4    | 1000  | J                  | μg/L |
| KWSM-DPT-07-AVG | TOTAL XYLENES               | 12.2   | 10000 |                    | μg/L |
| KWSM-DPT-07-AVG | 1-METHYLNAPHTHALENE         | 1.6    | 28    |                    | μg/L |
| KWSM-DPT-07-AVG | 2-METHYLNAPHTHALENE         | 0.355  | 28    | J                  | μg/L |
| KWSM-DPT-07-AVG | BENZENE                     | 0.645  | 1     | J                  | μg/L |
| KWSM-DPT-07-AVG | ETHYLBENZENE                | 3.85   | 700   |                    | μg/L |
| KWSM-DPT-07-AVG | METHYL TERTIARY-BUTYL ETHER | 4.05   | 20    |                    | μg/L |
| KWSM-DPT-07-AVG | NAPHTHALENE                 | 0.61   | 14    | J                  | μg/L |
| KWSM-DPT-07-AVG | TOLUENE                     | 0.38   | 1000  | J                  | μg/L |
| KWSM-DPT-07-AVG | TOTAL XYLENES               | 12.35  | 10000 |                    | μg/L |
| KWSM-DPT-07-AVG | 1-METHYLNAPHTHALENE         | 1.7    | 28    |                    | μg/L |
| KWSM-DPT-07-AVG | 2-METHYLNAPHTHALENE         | 0.35   | 28    | J                  | μg/L |
| KWSM-DPT-07-AVG | BENZENE                     | 0.66   | 1     | J                  | μg/L |
| KWSM-DPT-07-AVG | ETHYLBENZENE                | 3.8    | 700   |                    | μg/L |
| KWSM-DPT-07-AVG | METHYL TERTIARY-BUTYL ETHER | 4.1    | 20    |                    | μg/L |
| KWSM-DPT-07-AVG | NAPHTHALENE                 | 0.61   | 14    | J                  | μg/L |
| KWSM-DPT-07-AVG | TOLUENE                     | 0.36   | 1000  | J                  | μg/L |
| KWSM-DPT-07-AVG | TOTAL XYLENES               | 12.5   | 10000 |                    | μg/L |
| KWSM-DPT-08     | 1-METHYLNAPHTHALENE         | 0.46   | 28    | J                  | μg/L |
| KWSM-DPT-08     | ETHYLBENZENE                | 3.2    | 700   |                    | μg/L |
| KWSM-DPT-08     | METHYL TERTIARY-BUTYL ETHER | 8.8    | 20    |                    | μg/L |
| KWSM-DPT-08     | NAPHTHALENE                 | 0.71   | 14    | J                  | μg/L |

#### **GROUNDWATER DPT SCREENING ANALYTICAL RESULTS, FEBRUARY 2008 SIGSBEE MARINA** SITE ASSESSMENT REPORT **NAVAL AIR STATION KEY WEST, FLORIDA** PAGE 2 OF 2

| LOCATION ID | PARAMETER                   | RESULT | GCTL  | QUAL <sup>(b)</sup> | UNIT |
|-------------|-----------------------------|--------|-------|---------------------|------|
| KWSM-DPT-08 | TOTAL XYLENES               | 5.7    | 10000 |                     | μg/L |
| KWSM-DPT-09 | METHYL TERTIARY-BUTYL ETHER | 0.51   | 20    | J                   | μg/L |
| KWSM-DPT-11 | 1-METHYLNAPHTHALENE         | 2.1    | 28    |                     | μg/L |
| KWSM-DPT-11 | 2-METHYLNAPHTHALENE         | 1.9    | 28    |                     | μg/L |
| KWSM-DPT-11 | ETHYLBENZENE                | 7.9    | 700   |                     | μg/L |
| KWSM-DPT-11 | METHYL TERTIARY-BUTYL ETHER | 15.1   | 20    |                     | μg/L |
| KWSM-DPT-11 | NAPHTHALENE                 | 3.7    | 14    |                     | μg/L |
| KWSM-DPT-11 | TOTAL XYLENES               | 46.6   | 10000 |                     | μg/L |
| KWSM-DPT-11 | TRPH (C08-C40)              | 0.212  | 5     | J                   | mg/L |
| KWSM-DPT-14 | METHYL TERTIARY-BUTYL ETHER | 6.2    | 20    |                     | μg/L |

- (a) Shading indicates a concentration in excess of GCTLs
- (b) Qualifier (Qual.) Codes:J The result is an estimated quantity
- (c) The notation "-AVG" indicates that duplicate samples were collected. The duplicate results were averaged for the final result.

# GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS, MAY 2008 SIGSBEE MARINA SITE ASSESSMENT REPORT NAVAL AIR STATION KEY WEST, FLORIDA PAGE 1 OF 2

| LOCATION ID | PARAMETER                   | RESULT | GCTL  | QUAL(a) | UNIT |
|-------------|-----------------------------|--------|-------|---------|------|
| KWSM-MW-04  | BENZENE                     | 0.28   | 1     | J       | μg/L |
| KWSM-MW-04  | CHLOROFORM                  | 0.39   | 70    | J       | μg/L |
| KWSM-MW-04  | METHYL TERTIARY-BUTYL ETHER | 6      | 20    |         | μg/L |
| KWSM-MW-04  | TOLUENE                     | 0.41   | 1000  | J       | μg/L |
| KWSM-MW-05  | BENZENE                     | 0.27   | 1     | J       | μg/L |
| KWSM-MW-05  | CHLOROFORM                  | 0.25   | 70    | J       | μg/L |
| KWSM-MW-05  | ETHYLBENZENE                | 0.42   | 700   | J       | μg/L |
| KWSM-MW-05  | METHYL TERTIARY-BUTYL ETHER | 6.6    | 20    |         | μg/L |
| KWSM-MW-05  | TOLUENE                     | 0.34   | 1000  | J       | μg/L |
| KWSM-MW-05  | TOTAL XYLENES               | 0.66   | 10000 | J       | μg/L |
| KWSM-MW-05  | TRPH (C08-C40)              | 0.223  | 5     | J       | mg/L |
| KWSM-MW-06  | FLUORANTHENE                | 0.34   | 280   | J       | μg/L |
| KWSM-MW-06  | FLUORENE                    | 0.26   | 280   | J       | μg/L |
| KWSM-MW-06  | METHYL TERTIARY-BUTYL ETHER | 12.8   | 20    |         | μg/L |
| KWSM-MW-06  | PHENANTHRENE                | 0.82   | 210   | J       | μg/L |
| KWSM-MW-06  | TOLUENE                     | 0.3    | 1000  | J       | μg/L |
| KWSM-MW-07  | CHLOROMETHANE               | 2.1    | 2.7   |         | μg/L |
| KWSM-MW-07  | METHYL TERTIARY-BUTYL ETHER | 20.9   | 20    |         | μg/L |
| KWSM-MW-07  | TOLUENE                     | 0.79   | 1000  | J       | μg/L |
| KWSM-MW-07  | TRPH (C08-C40)              | 0.429  | 5     |         | mg/L |
| KWSM-MW-08  | 1-METHYLNAPHTHALENE         | 0.58   | 28    | J       | μg/L |
| KWSM-MW-08  | 2-METHYLNAPHTHALENE         | 0.63   | 28    | J       | μg/L |
| KWSM-MW-08  | ACRYLONITRILE               | 2.2    | 0.06  | J       | μg/L |
| KWSM-MW-08  | CHLOROFORM                  | 1.2    | 70    |         | μg/L |
| KWSM-MW-08  | ETHYLBENZENE                | 4.1    | 700   | J       | μg/L |
| KWSM-MW-08  | METHYL TERTIARY-BUTYL ETHER | 8.5    | 20    |         | μg/L |
| KWSM-MW-08  | NAPHTHALENE                 | 1.2    | 14    |         | μg/L |
| KWSM-MW-08  | TOLUENE                     | 0.6    | 1000  | J       | μg/L |
| KWSM-MW-08  | TOTAL XYLENES               | 16.6   | 10000 |         | μg/L |
| KWSM-MW-08  | TRPH (C08-C40)              | 0.325  | 5     |         | mg/L |
| KWSM-MW-08  | 1-METHYLNAPHTHALENE         | 0.575  | 28    | J       | μg/L |
| KWSM-MW-08  | 2-METHYLNAPHTHALENE         | 0.63   | 28    | J       | μg/L |
| KWSM-MW-08  | ACRYLONITRILE               | 1.6    | 0.06  | J       | μg/L |
| KWSM-MW-08  | CHLOROFORM                  | 1.1    | 70    |         | μg/L |
| KWSM-MW-08  | ETHYLBENZENE                | 3.45   | 700   | J       | μg/L |
| KWSM-MW-08  | METHYL TERTIARY-BUTYL ETHER | 8.35   | 20    |         | μg/L |
| KWSM-MW-08  | NAPHTHALENE                 | 1.15   | 14    |         | μg/L |
| KWSM-MW-08  | TOLUENE                     | 0.575  | 1000  | J       | μg/L |

**TABLE 4-3** 

# GROUNDWATER MONITORING WELLS ANALYTICAL RESULTS, MAY 2008 SIGSBEE MARINA SITE ASSESSMENT REPORT NAVAL AIR STATION KEY WEST, FLORIDA PAGE 2 OF 2

| LOCATION ID | PARAMETER                   | RESULT | GCTL  | QUAL(a) | UNIT |
|-------------|-----------------------------|--------|-------|---------|------|
| KWSM-MW-08  | TOTAL XYLENES               | 14.65  | 10000 |         | μg/L |
| KWSM-MW-08  | TRPH (C08-C40)              | 0.307  | 5     |         | mg/L |
| KWSM-MW-08  | 1-METHYLNAPHTHALENE         | 0.57   | 28    | J       | μg/L |
| KWSM-MW-08  | 2-METHYLNAPHTHALENE         | 0.63   | 28    | J       | μg/L |
| KWSM-MW-08  | CHLOROFORM                  | 1      | 70    |         | μg/L |
| KWSM-MW-08  | ETHYLBENZENE                | 2.8    | 700   | J       | μg/L |
| KWSM-MW-08  | METHYL TERTIARY-BUTYL ETHER | 8.2    | 20    |         | μg/L |
| KWSM-MW-08  | NAPHTHALENE                 | 1.1    | 14    |         | μg/L |
| KWSM-MW-08  | TOLUENE                     | 0.55   | 1000  | J       | μg/L |
| KWSM-MW-08  | TOTAL XYLENES               | 12.7   | 10000 |         | μg/L |
| KWSM-MW-08  | TRPH (C08-C40)              | 0.289  | 5     |         | mg/L |
| KWSM-MW-09D | 1-METHYLNAPHTHALENE         | 0.41   | 28    | J       | μg/L |
| KWSM-MW-09D | 2-METHYLNAPHTHALENE         | 0.68   | 28    | J       | μg/L |
| KWSM-MW-09D | BENZENE                     | 0.49   | 1     | J       | μg/L |
| KWSM-MW-09D | CHLOROFORM                  | 0.47   | 70    | J       | μg/L |
| KWSM-MW-09D | ETHYLBENZENE                | 4.4    | 700   |         | μg/L |
| KWSM-MW-09D | METHYL TERTIARY-BUTYL ETHER | 3.1    | 20    |         | μg/L |
| KWSM-MW-09D | NAPHTHALENE                 | 1.1    | 14    |         | μg/L |
| KWSM-MW-09D | TOLUENE                     | 2.9    | 1000  | ·       | μg/L |
| KWSM-MW-09D | TOTAL XYLENES               | 26     | 10000 |         | μg/L |
| KWSM-MW-09D | TRPH (C08-C40)              | 0.201  | 5     | J       | mg/L |

<sup>\*</sup> Duplicate sample collected at KWSM-MW-08. Results were averaged. GCTL as defined in FAC 62-777, Table I.









#### 5.0 SITE INVESTIGATION SUMMARY

The significant findings from each phase of site assessment activities are discussed below.

#### 5.1 SOURCE OF HYDROCARBONS

A fuel leak at the south end of the pump island resulted in a discharge product to the subsurface in January 2007. A limited site assessment of area was conducted and approximately 1.4 cubic yards of petroleum impacted soil was removed. Soil vapor screening and soil sampling of the excavation walls confirmed the removal of petroleum impacted soil from the vicinity of the leak. During soil removal, a test pit was also installed to collect any free product discharged to the groundwater. Within approximately 2 hours of removing free product the test pit had recharged with groundwater containing heavy aromatic fuels on the surface. This remaining free product was attributed to historical releases not associated with the January 2007 release.

#### 5.2 SITE CONDITIONS

The site is underlain by oolitic limestone to approximately 25 feet bls. Lithologies suggesting the presence of confining layers were not observed at the site. No active potable water supply or irrigation wells occur on Fleming Key.

#### 5.3 SOIL ASSESSMENT

Headspace analysis of vadose zone soil samples collected during the investigation did not indicate "excessively contaminated soil" for petroleum constituents, as defined in Chapter 62-770, F.A.C. Furthermore, VOC, PAHs, and TRPH contaminants were not detected above SCTLs in the soil samples collected for fixed-base laboratory analysis.

#### 5.4 GROUNDWATER ASSESSMENT

A slight exceedance of naphthalene was detected in the sample collected from DPT boring KWSM-DPT-02. All other detections during the DPT assessment were below GCTLs. In addition, slight exceedances of the VOCs acrylonitrile and MTBE above GCTLs occurred in monitoring wells KWSMMW-07 and -08 respectively. PAH constituents and TRPH were found in the monitoring well samples, however all detected concentrations were below GCTLs.

The horizontal extent of contamination from the reported line leak is defined to the south by monitoring wells KWSMMW-04 and -05 and to the west by KWSMMW-06. The retaining wall and waters of Florida Bay occur to the east. Monitoring well KWSMMW-07 did not have significant concentrations of petroleum contaminants and defined the extent to the north. The vertical extent of contamination was defined by

KWSMMW-09D, which was screened at a depth of 20-25 feet. Petroleum contaminants were not detected above GCTLs in the groundwater sample collected from the well.

#### 6.0 CONCLUSIONS AND RECOMMENDATION

The conclusions, based on the data collected during the site assessment performed by TtNUS at the Sigsbee Marina, are summarized as follows:

- The site is underlain by a surficial aquifer comprised of oolitic limestone. No confining layers were encountered within the upper 25 feet of the surficial aquifer.
- Headspace analysis was conducted in the 0-to-6-foot zone nearest to the surface. No vadose zone samples produced PID readings indicating the presence of "excessively contaminated soil."
- The surficial aquifer is non-potable and is assumed to be tidally influenced in the site vicinity.
- Contaminated soil has previously been excavated and removed where feasible, and no free product occurred at the site during assessment activities.
- The vertical and horizontal extent of contamination has been defined by the investigation.
- Minor exceedances of the VOCs MTBE and acrylonitrile were detected in groundwater samples
- Based on the data presented in this SAR, and supported by the criteria cited in Chapter 62-770, FAC, it is recommended that two additional groundwater sampling events be conducted at the site. All six monitoring wells should be purged and sampled for VOCs, PAHs and TRPH as in the initial round of sampling. Results of the sampling events will determine if the site qualifies for NFA or if further MNA is required. It is also recommended that the surficial aquifer characteristics be investigated during the next sampling event.

#### **REFERENCES**

EPA (United States Environmental Protection Agency). 1991. Management of Investigation-Derived Waste During Site Inspections. DER Directive 9345.3.02.

FDEP (Florida Department of Environmental Protection). 2002. SOPs for Field Activities, DEP-SOP-001/01. Tallahassee, Florida, January.

PSI (Professional Service Industries, Inc.). 2007. Source Removal Report for Sigsbee Marina, Key West Naval Air Station. Miami, Florida, March.

TtNUS. 2002. Florida Regional Quality Assurance Program Manual. Tallahassee, Florida, October.

## APPENDIX A FIELD LOG FORMS

| <b>f</b>                               | Æ            | Tetra                          | Tech N                                      | IUS, Inc                                                         | ·                              | <u>BC</u>  | ORING LOG                                 |    | Pag                           | e      | (             | of |              |
|----------------------------------------|--------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------|------------|-------------------------------------------|----|-------------------------------|--------|---------------|----|--------------|
| PRO.<br>DRIL                           | JECT<br>LING | NAME<br>NUME<br>COMF<br>RIG:   | BER:                                        |                                                                  | TOUR TOUR LESS TOUR BELLEVILLE | -09<br>-20 | BORING N<br>DATE:<br>GEOLOGIS<br>DRILLER: |    | MW-04<br>Sto 108<br>Billy Mos | -<br>- |               |    |              |
| Sample<br>No.<br>and<br>Type or<br>RQD | (Ft.)<br>or  | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval |                                |            | RIAL DESCRIPTION  Material Classification | U  | Remarks                       | Sample | Sampler BZ Ba |    | Driller BZ** |
|                                        |              |                                |                                             |                                                                  |                                |            | surface grand of                          |    |                               |        |               |    |              |
| 5                                      |              |                                |                                             |                                                                  |                                |            | Orlite limeston<br>light gray brown.      |    |                               | ٥      | 0             | 0  | S            |
|                                        |              |                                |                                             | -                                                                |                                |            |                                           |    |                               |        |               |    |              |
| 10                                     |              |                                |                                             | •                                                                |                                |            |                                           |    |                               | 0      | 0             | 0  | 0            |
| 15                                     |              |                                |                                             | 1                                                                |                                |            |                                           |    |                               | 6      | 6             | 0  | 0            |
|                                        |              |                                |                                             | <b>1</b><br>-                                                    |                                |            |                                           |    |                               |        |               |    |              |
|                                        |              |                                |                                             | <del>-</del>                                                     |                                |            |                                           |    |                               |        |               |    |              |
|                                        |              |                                |                                             | -<br>-                                                           |                                |            |                                           |    |                               |        |               |    |              |
| <b> </b>                               | -            | $\leftarrow$                   | <del>}</del>                                | -                                                                |                                | +          |                                           | +- |                               | 一      | 1             | 一  | T            |

| * When rock coring, enter rock  ** Include monitor reading in 6  Remarks: |     | borehole. Increase reading fr | equency if elevated reponse read. | Drillii<br>Background | ng Area |  |
|---------------------------------------------------------------------------|-----|-------------------------------|-----------------------------------|-----------------------|---------|--|
| Converted to Well:                                                        | Yes | No                            | Well I.D. #:                      | KWSMMW                | -04     |  |
|                                                                           |     |                               |                                   |                       |         |  |

| PRO<br>PRO<br>DRIL | JECT<br>JECT<br>LING<br>LING | Tetra  NAME NUME COME RIG:  Blows / 6" or RQD (%) | E:<br>BER: | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | 100 m | - (\u09<br>- 09<br>- (\u09)<br>- (\u09) | DRING LOG  BORING N DATE: GEOLOGIS DRILLER: RIAL DESCRIPTION  Material Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | MW-05<br>5/1/08<br>Billy N | PID/FII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u> | ading ( |             |
|--------------------|------------------------------|---------------------------------------------------|------------|------------------------------------------------------------------|-------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|-------------|
|                    |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         | The state of the s | r-car    |                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         | 01:F; / F=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
|                    |                              |                                                   |            | 1                                                                |       |                                         | and mach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0       | 0       | <i>~</i> ~3 |
|                    |                              |                                                   |            |                                                                  |       |                                         | and continued control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         | and a second sec |          |                            | Π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         | 30 HI 100 HI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
|                    |                              |                                                   |            | 1                                                                |       |                                         | and and the state of the state  |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
| 200000000          |                              |                                                   |            |                                                                  |       |                                         | 60 TALLANDON (ASSAULT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       |         | ć           |
|                    |                              |                                                   |            |                                                                  |       |                                         | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            | $oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{oldsymbol{ol}}}}}}}}}}}}}}}}}}$ |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |             |
| 15                 |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0       | 0       | Q           |
|                    |                              |                                                   |            |                                                                  |       |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |             |
|                    |                              |                                                   | ,          |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |             |
|                    |                              |                                                   | ,          |                                                                  |       | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         | _           |
|                    |                              |                                                   | ,          |                                                                  |       | ļ                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |             |
|                    |                              |                                                   |            | 1                                                                |       | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ        |                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         | _           |
|                    |                              |                                                   |            | _                                                                |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ļ        |                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |             |
|                    |                              |                                                   | <u> </u>   | _                                                                |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |         |             |
|                    |                              | /                                                 | ļ          | -                                                                |       | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |         |             |
|                    |                              |                                                   |            |                                                                  |       |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         | 1           |

|                                                                      |     |                       |          |         |        |    | $\top$   |  |  |
|----------------------------------------------------------------------|-----|-----------------------|----------|---------|--------|----|----------|--|--|
| When rock coring, enter rational include monitor reading in Remarks: |     | Drillin<br>Background |          |         | 0      | )  |          |  |  |
| Converted to Well:                                                   | Yes | <br>No                | Well I.D | ). #: _ | KWSMMW | -0 | <u> </u> |  |  |

| PRO-<br>DRIL                 | JECT<br>LING<br>LING      | Tetra  NAME NUME COMF | E:<br>BER:                        | IUS, Inc                                            | Gle<br>Go<br>Br                                        | 095<br>L<br>57 | DRING LOG  BORING DATE: GEOLOG DRILLER RIAL DESCRIPTION | SIST:            | 5/8/09<br>8B<br>Bally                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Š                                                |            | <u> </u>   |              |
|------------------------------|---------------------------|-----------------------|-----------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------|---------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------|------------|--------------|
| No.<br>and<br>Type or<br>RQD | (Ft.)<br>or<br>Run<br>No. | 6" or<br>RQD<br>(%)   | Recovery<br>/<br>Sample<br>Length | Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color          | Material Classification                                 | S<br>C<br>S<br>* | Remarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                                           | Sampler BZ | Borehole** | Driller BZ** |
|                              |                           |                       |                                   |                                                     |                                                        |                | grand, ware                                             |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |            |            |              |
|                              |                           |                       |                                   |                                                     |                                                        |                | Till maturel.                                           |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                         |            | ļ          |              |
|                              |                           | 4                     |                                   |                                                     |                                                        |                | orlitic liesto                                          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                | <u> </u>   |            |              |
|                              |                           |                       |                                   |                                                     |                                                        |                | granbran made                                           | atel             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\vdash$   |            |              |
| E                            |                           |                       |                                   |                                                     |                                                        |                | associated,                                             | est.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                | 0          | Ð          | Ú            |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ╁                                                |            |            |              |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>†</b>                                         | $\vdash$   |            |              |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\Box$     |            |              |
| N                            |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                | Ö          | G          | 6            |
|                              |                           |                       |                                   |                                                     |                                                        |                | All and a second                                        |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |            |            |              |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                |            | ļ          |              |
| 13                           |                           |                       |                                   |                                                     |                                                        |                | <u> </u>                                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6).                                              |            | -          |              |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>                                     </del> |            | <u> </u>   | _            |
| <u> </u>                     |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | $\vdash$   | _          |              |
|                              |                           |                       | 1                                 |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$                                         | T          |            |              |
|                              |                           |                       | †                                 |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                | T          |            |              |
|                              |                           |                       | 1                                 | 1                                                   |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |            |            |              |
|                              |                           |                       |                                   | ]                                                   |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  |            |            |              |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  |            |            |              |
|                              |                           |                       | ļ                                 |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                | _          |            | igspace      |
|                              |                           |                       | <u> </u>                          |                                                     |                                                        | <u> </u>       |                                                         |                  | with the same of t | ╂-                                               | <u> </u>   | _          | -            |
| <u> </u>                     |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                                | _          | _          | $\vdash$     |
|                              |                           |                       |                                   |                                                     |                                                        |                |                                                         |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                  | <u> </u>   | <u>L</u>   |              |

| * When rock coring, enter rock<br>** Include monitor reading in 6<br>Remarks: | Drilling Area Background (ppm): |  |    |  |              |           |
|-------------------------------------------------------------------------------|---------------------------------|--|----|--|--------------|-----------|
| Converted to Well:                                                            | Yes                             |  | No |  | Well I.D. #: | KWSMHW-06 |

| RO.<br>RO.<br>RIL                  | JECT<br>LING | NAME<br>NUME<br>COMF<br>RIG:   | BER:                                        |                                                                  | She<br>Go<br>Go<br>B-5                                 | ) (a)<br>095 | DRING LOG  BORING DATE: GEOLOG DRILLER RIAL DESCRIPTION | SIST: | MW-67<br>5 7 6<br>Billy Mos | 8      | D Rea        | ding (     | ppm          |
|------------------------------------|--------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--------------|---------------------------------------------------------|-------|-----------------------------|--------|--------------|------------|--------------|
| mple<br>No.<br>and<br>pe or<br>KQD | (Ft.)<br>or  | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color        | Material Classification                                 | U     | Remarks                     | Sample | Sampler BZ   | Borehole** | Driller BZ** |
|                                    |              |                                |                                             |                                                                  |                                                        |              | Grand + sand, com                                       | × -   |                             |        |              |            |              |
|                                    |              |                                |                                             |                                                                  |                                                        |              | solitichiester                                          | ٠     |                             |        |              |            |              |
|                                    | ·            |                                |                                             |                                                                  |                                                        |              | gentros mode                                            | 此人    |                             |        |              |            |              |
| 5                                  |              |                                |                                             |                                                                  |                                                        |              | esustilled s                                            | -     |                             | 0      | 0            | Ó          | ٥            |
|                                    |              |                                |                                             |                                                                  |                                                        |              | shell from I                                            |       |                             | -      | _            |            | <u> </u>     |
|                                    |              |                                |                                             |                                                                  |                                                        |              | ografia                                                 |       |                             | +      | ┢            |            | -            |
|                                    |              |                                | ,                                           | •                                                                |                                                        |              |                                                         | -     |                             |        | <del> </del> |            | ┢            |
| U                                  |              |                                |                                             |                                                                  |                                                        |              |                                                         |       |                             | 0      | 0            | 0          | 0            |
|                                    |              |                                |                                             | 1                                                                |                                                        |              |                                                         |       |                             |        |              |            |              |
|                                    |              |                                |                                             |                                                                  |                                                        |              |                                                         |       |                             |        | <u> </u>     | ļ          |              |
| 3                                  |              |                                |                                             |                                                                  |                                                        |              | V                                                       | -     |                             | -      | ļ            |            |              |
|                                    |              |                                |                                             |                                                                  |                                                        | ļ            |                                                         | -     |                             |        | -            | _          | _            |
|                                    |              |                                |                                             |                                                                  |                                                        |              |                                                         | +-    |                             | +      | -            |            | $\vdash$     |
|                                    |              |                                |                                             | -                                                                |                                                        |              |                                                         |       |                             |        | +            | -          | _            |
|                                    |              |                                | <u> </u>                                    | 1                                                                |                                                        |              |                                                         |       |                             | -      | T            |            |              |
|                                    |              |                                |                                             | 1                                                                |                                                        |              |                                                         |       |                             |        |              |            |              |
|                                    |              |                                |                                             | ]                                                                |                                                        |              |                                                         |       |                             |        |              |            |              |
|                                    |              |                                |                                             |                                                                  |                                                        |              |                                                         |       |                             |        |              |            | _            |
|                                    |              |                                |                                             |                                                                  |                                                        | ļ            |                                                         |       |                             |        | _            | <u> </u>   | _            |
|                                    |              | $\angle$                       | <b></b>                                     | -                                                                |                                                        |              |                                                         |       |                             | +      | _            | _          | $\vdash$     |
|                                    |              |                                | <u> </u>                                    | 1                                                                |                                                        | <u> </u>     |                                                         |       |                             |        |              | -          |              |

|                                                                                                                                                                   |            |      |     |   |      |  |         |       |                       |             |                     |   | Ĺ        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----|---|------|--|---------|-------|-----------------------|-------------|---------------------|---|----------|
|                                                                                                                                                                   |            | 1    |     |   | ·    |  |         |       |                       |             |                     |   |          |
|                                                                                                                                                                   |            | 1    |     |   |      |  |         |       |                       |             |                     |   |          |
|                                                                                                                                                                   |            | 1    |     |   |      |  |         |       |                       |             |                     |   |          |
| When rock coring, enter rock brokeness.  * Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks: |            |      |     |   |      |  |         |       | Drillii<br>Background | ng A<br>(pp | rea<br>m): <b>[</b> |   | <u>フ</u> |
| Conv                                                                                                                                                              | erted to W | ell: | Yes | X | No _ |  | Well I. | D. #: | KNEWMI                | <u>u ~</u>  | >7                  | r |          |
|                                                                                                                                                                   |            |      |     |   |      |  |         |       |                       |             |                     |   |          |

| PRO<br>DRIL                            | JECT<br>LING | Tetra NAME NUME COME RIG:      | E:<br>BER:                                  | NUS, Inc                                                         | 25562                                                  | - 4          | DRING LOG  BORING N DATE: GEOLOGI DRILLER: |                                                  | MW-06<br>5/1/0<br>8/3 | <u> </u> | Community of the Commun | of _       | - On the Contraction of the Cont |
|----------------------------------------|--------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--------------|--------------------------------------------|--------------------------------------------------|-----------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample<br>No.<br>and<br>Type or<br>RQD | (Ft.)<br>or  | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | /ATE         | RIAL DESCRIPTION  Material Classification  | U S C S *                                        | Remarks               | Sample   | Sampler BZ Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Borehole** | Driller BZ** dd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        |              | colles + balles,                           |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        | <u> </u>     | correntered.                               | <u> </u>                                         |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        |              | ostitic Incolone,                          |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        |              | gray track moder                           | lst.                                             |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5                                      |              |                                |                                             |                                                                  |                                                        |              | as I leled                                 |                                                  |                       | 150      | Z.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        |              | ***************************************    |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                        |              |                                |                                             |                                                                  |                                                        |              | 100 Maria                                  |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        |              |                                |                                             |                                                                  |                                                        |              |                                            |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10                                     |              |                                |                                             | 1                                                                |                                                        |              |                                            |                                                  |                       | 175      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |              |                                |                                             | 1                                                                |                                                        |              | and the second                             |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        |              |                                            |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13                                     |              |                                |                                             |                                                                  |                                                        |              | V                                          | <u> </u>                                         |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             |                                                                  |                                                        |              |                                            | <u> </u>                                         |                       |          | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u></u>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                | ,                                           |                                                                  |                                                        |              |                                            | -                                                |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b></b>                                |              |                                | <u> </u>                                    |                                                                  |                                                        |              |                                            |                                                  |                       |          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b></b>                                | <u> </u>     |                                |                                             |                                                                  |                                                        | <b> </b>     |                                            | ╂—                                               |                       |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b></b>                                |              |                                | <del> </del>                                |                                                                  |                                                        | <del> </del> |                                            |                                                  |                       | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                | <del> </del>                                | 1                                                                |                                                        |              |                                            | <del>                                     </del> |                       |          | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        |              |                                |                                             | 1                                                                |                                                        |              |                                            | T                                                |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        |              |                                |                                             | 1                                                                |                                                        |              |                                            | T                                                |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                        | <b></b>      |                                | 1                                           | 1                                                                |                                                        |              | • · · · · · · · · · · · · · · · · · · ·    |                                                  |                       |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|         |                                           |  |      |            |     |                | <u> </u> |  |
|---------|-------------------------------------------|--|------|------------|-----|----------------|----------|--|
|         | coring, enter rocl<br>onitor reading in 6 |  | ead. | Drilling A | rea |                |          |  |
| temarks | •                                         |  |      |            |     | Background (pp | m):      |  |

| PRO<br>PRO<br>DRIL                     | JECT<br>LING | Tetra NAME NUME COME RIG:      | Ξ:<br>3ER:                                  | NUS, Inc                                                         | 55/re<br>CTO<br>561<br>3-57                            | 16 à  | DRING I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L <b>OG</b> BORING I  DATE:  GEOLOG  DRILLER: | ST: _     | MW-0    | age _<br>09 [<br>108<br>(055 | <u> </u>   | of         |                 |
|----------------------------------------|--------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----------|---------|------------------------------|------------|------------|-----------------|
| Sample<br>No.<br>and<br>Type or<br>RQD | (Ft.)<br>or  | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soll Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color | RIAL DESCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RIPTION                                       | U S C S * | Remarks | Sample Sample                | Sampler BZ | Borehole** | Driller BZ** ad |
|                                        |              |                                |                                             |                                                                  |                                                        |       | course a Course a Colitic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Livestone                                     | .id       |         |                              |            |            |                 |
| 5                                      |              |                                |                                             |                                                                  | •                                                      |       | mskl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | idated                                        |           |         | 25                           | 0          | 6          | _               |
|                                        |              |                                |                                             |                                                                  |                                                        |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |           |         | 380                          | 0          | 0          |                 |
| 15                                     |              |                                |                                             |                                                                  |                                                        |       | October 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               |           |         | 50                           | C          | O          | ¢               |
| 20                                     |              |                                |                                             |                                                                  |                                                        |       | and the state of t |                                               |           |         | 10                           | ٥          | 0          | 0               |
| 25                                     |              |                                |                                             |                                                                  |                                                        |       | The state of the s |                                               |           |         | 0                            | ಎ          | <u> </u>   |                 |

|      |         |       |             |     |               |         |                |                      |            |                     |                | П          |   |                                                                                                               |
|------|---------|-------|-------------|-----|---------------|---------|----------------|----------------------|------------|---------------------|----------------|------------|---|---------------------------------------------------------------------------------------------------------------|
|      | Í       |       |             |     |               |         |                |                      |            |                     |                |            |   |                                                                                                               |
|      |         |       |             |     |               |         | <b>%</b>       |                      |            |                     |                |            |   |                                                                                                               |
| 25   |         |       |             |     |               |         |                | J                    |            |                     | 0              | ್ರ         | ು | e de la companya de |
|      | de moni | -     | er rock bro |     | ) borehole. I | ncrease | reading freque | ncy if elevated repo | onse read. | Drill<br>Background | ng A<br>d (ppi | rea<br>m): | 0 |                                                                                                               |
| Conv | erted   | to We | II:         | Yes |               |         | No             | Wel                  | I I.D. #:  | Kyshy               | J - C          | A          | 5 |                                                                                                               |
|      |         |       |             |     |               |         |                |                      |            |                     |                |            |   |                                                                                                               |
|      |         |       |             |     |               |         |                |                      |            |                     |                |            |   |                                                                                                               |

WELL NO .: KWSMMW-09



## OVERBURDEN MONITORING WELL SHEET FLUSH - MOUNT

|                                | DATE BEGUN 5/6/68 DAT                | CATION MW-04 Keylind RING MW-04 TE COMPLETED 5/6/08 TUM                                                                                                         | DRILLER Billy 1655 DRILLING METHOD HSA DEVELOPMENT METHOD CONTRIBUTION |
|--------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| IN                             |                                      |                                                                                                                                                                 | N/A                                                                    |
| ACAD: FORM_MWFM.dwg 07/20/99 I | FLUSH MOUNT—SURFACE CASING WITH LOCK | TYPE OF SURFACE SEAL:  TYPE OF PROTECTIVE CASING:  I.D. OF PROTECTIVE CASING:  DIAMETER OF HOLE:  TYPE OF RISER PIPE:  RISER PIPE I.D.:  TYPE OF BACKFILL/SEAL: | 3' stell<br>8".  Loute/goot                                            |
|                                |                                      | TYPE OF SEAL:                                                                                                                                                   | d 30/65:                                                               |
|                                |                                      | - ELEVATION/DEPTH TOP OF SCRE<br>TYPE OF SCREEN: PVC<br>SLOT SIZE x LENGTH: 0 - 8                                                                               | ·                                                                      |
|                                |                                      | DIAMETER OF HOLE IN BEDROCK  — ELEVATION / DEPTH BOTTOM OF                                                                                                      | : N/A - 14                                                             |
|                                |                                      | ELEVATION / DEPTH BOTTOM OF F  BACKFILL MATERIAL BELOW SAN                                                                                                      | HOLE: / 14.5                                                           |

| WELL NO .: MW-0 | 7 |
|-----------------|---|
|-----------------|---|



Tetra Tech NUS, Inc.

| PRO<br>PRO<br>DAT<br>FIE | DJECT Signal DJECT NO. (1) TE BEGUN 5 LD GEOLOGIST DUND ELEVATION | GO - US BO DA | CATION NAS Kondost RING MWDS TE COMPLETED 5/6/06 TUM            | DRILLER Billy Man DRILLING METHOD HSA DEVELOPMENT METHOD CARACTERIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------|-------------------------------------------------------------------|---------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                   |               | ELEVATION TOP OF RISER:                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 56/97/10 f               | V.                                                                |               | TYPE OF SURFACE SEAL:                                           | that Comet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ACAD: FORM_MWFM.dwg      | FLUSH MOUNT—<br>SURFACE CASING<br>WITH LOCK                       |               | TYPE OF PROTECTIVE CASING:_  I.D. OF PROTECTIVE CASING:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ACAU                     |                                                                   |               | TYPE OF RISER PIPE: PN                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                                                                   |               | RISER PIPE I.D.:                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                                                                   |               | TYPE OF BACKFILL/SEAL: 1/20                                     | enlant/gont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                                                   |               | ELEVATION/DEPTH TOP OF SEA                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                                                                   |               | ELEVATION/DEPTH TOP OF SAN                                      | ID:/ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                                                   |               | ELEVATION/DEPTH TOP OF SCR TYPE OF SCREEN:  SLOT SIZE x LENGTH: | VC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                                                   |               | TYPE OF SAND PACK: 20/30                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                                                                   |               | DIAMETER OF HOLE IN BEDROC                                      | K: NJA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                                                   |               | ELEVATION / DEPTH BOTTOM C                                      | OF SCREEN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          |                                                                   |               | ELEVATION / DEPTH BOTTOM OF                                     | Name and the same |
|                          |                                                                   |               | BACKFILL MATERIAL BELOW SA                                      | ND: <u>20/30</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                                                                   |               |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| WELL NO.: PAGE | WELL | NO.: | MW-06 |
|----------------|------|------|-------|
|----------------|------|------|-------|



|                     | PROJECT NO. 600-07 BO DATE BEGUN 5 8 08 DA FIELD GEOLOGIST 65 | CATION NAS Key West RING TE COMPLETED 5/8/08                                | DRILLER Billy Moss  DRILLING METHOD HSA  DEVELOPMENT METHOD Centrifund |
|---------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------|
| IN                  |                                                               | ELEVATION TOP OF RISER:                                                     | N/4                                                                    |
| 9 07/20/99          |                                                               | TYPE OF SURFACE SEAL:                                                       | Hand Cement                                                            |
| ACAD: FORM_MWFM.dwg | FLUSH MOUNT—SURFACE CASING WITH LOCK                          | TYPE OF PROTECTIVE CASING:_  I.D. OF PROTECTIVE CASING:_  DIAMETER OF HOLE: | g 60                                                                   |
|                     |                                                               | TYPE OF RISER PIPE: PU                                                      |                                                                        |
|                     |                                                               | TYPE OF BACKFILL/SEAL: Joen                                                 | tonte/good                                                             |
|                     |                                                               | — ELEVATION/DEPTH TOP OF SEAL  TYPE OF SEAL: 30 65 fm                       | - *                                                                    |
|                     |                                                               | — ELEVATION/DEPTH TOP OF SANI                                               | D:                                                                     |
|                     |                                                               | ELEVATION/DEPTH TOP OF SCREEN:  TYPE OF SCREEN:  SLOT SIZE x LENGTH:        |                                                                        |
|                     |                                                               | TYPE OF SAND PACK: 20/30                                                    |                                                                        |
|                     |                                                               | DIAMETER OF HOLE IN BEDROCK                                                 | ,                                                                      |
|                     |                                                               | ELEVATION / DEPTH BOTTOM OF                                                 |                                                                        |
|                     |                                                               | - ELEVATION/DEPTH BOTTOM OF H                                               |                                                                        |
|                     |                                                               | BACKFILL MATERIAL BELOW SAN                                                 | ID:                                                                    |

| WELL | NO.: | <u> </u> |
|------|------|----------|
|      |      |          |



| 19th 19th Nos, Inc. |                             |                                            |                       |  |  |
|---------------------|-----------------------------|--------------------------------------------|-----------------------|--|--|
|                     |                             | LOCATION NAS Key West                      | DRILLER Billy llos    |  |  |
|                     |                             | BORING <u>MW-017</u> DATE COMPLETED 5/7/08 | DRILLING METHOD       |  |  |
|                     | FIELD GEOLOGIST             | DATUM                                      | DEVELOPMENT           |  |  |
|                     | GROUND ELEVATION            | DATOM                                      | METHOD <u>Central</u> |  |  |
| INL                 |                             | ELEVATION TOP OF RISER:                    | N/A.                  |  |  |
| 07/20/99            |                             | TYPE OF SURFACE SEAL:                      | ottad Cement          |  |  |
| ACAD: FORM_MWFM.dwg | FLUSH MOUNT                 | TYPE OF PROTECTIVE CASING:_                | sted weather.         |  |  |
| ORM                 | SURFACE CASING<br>WITH LOCK | I.D. OF PROTECTIVE CASING:                 | 8"                    |  |  |
| CAD: F              |                             | DIAMETER OF HOLE:                          | </td                  |  |  |
| •                   |                             | TYPE OF RISER PIPE:                        |                       |  |  |
|                     |                             | RISER PIPE I.D.:                           |                       |  |  |
|                     |                             | TYPE OF BACKFILL/SEAL:                     | nit-/                 |  |  |
|                     |                             | TYPE OF BACKFILL/SEAL:                     | enerve/stor           |  |  |
|                     |                             |                                            |                       |  |  |
|                     |                             |                                            |                       |  |  |
|                     |                             | ELEVATION/DEPTH TOP OF SEA                 | L:                    |  |  |
|                     |                             | TYPE OF SEAL: 30 16 Jun                    | in ship               |  |  |
|                     |                             | -5-4                                       |                       |  |  |
|                     |                             |                                            |                       |  |  |
|                     | <b>*</b>                    | ELEVATION/DEPTH TOP OF SAN                 | ID: / 2               |  |  |
|                     |                             |                                            |                       |  |  |
|                     |                             |                                            |                       |  |  |
|                     |                             | ELEVATION (DEDTU TOD OF COR                | DEFN: 1 -2            |  |  |
|                     |                             | TYPE OF SCREEN:                            |                       |  |  |
|                     |                             | SLOT SIZE x LENGTH:                        | OLX 10 H              |  |  |
|                     |                             |                                            | 4                     |  |  |
|                     |                             | TYPE OF SAND PACK: 20 20                   | suca                  |  |  |
|                     |                             | 5 orland of                                |                       |  |  |
|                     |                             | DIAMETER OF HOLE IN BEDROO                 | K: N/A                |  |  |
|                     |                             | ELEVATION / DEPTH BOTTOM C                 | OF SCREEN: / 13:00    |  |  |
|                     |                             | ELEVATION / DEPTH BOTTOM C                 | OF SAND:              |  |  |
|                     |                             | ELEVATION/DEPTH BOTTOM OF                  | HOLE:                 |  |  |
|                     |                             | BACKFILL MATERIAL BELOW SA                 | ND:                   |  |  |
|                     |                             |                                            |                       |  |  |

| ELL NO.:  | M | W - | 08 |
|-----------|---|-----|----|
| ELL NO .: | M | W - | 08 |



Tetra Tech NUS, Inc.

|                     | PROJECT Sissles Warms PROJECT NO. J CTO -095 DATE BEGUN 5/7/08 FIELD GEOLOGIST GB GROUND ELEVATION | LOCATION NAS Key West BORING NW-081 DATE COMPLETED 5/7/08  DATUM | DRILLER Billy NOSS  DRILLING HSA  DEVELOPMENT METHOD centrifugal |
|---------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| 님                   |                                                                                                    | ELEVATION TOP OF RISER:                                          | -N/A                                                             |
| 62/20/88            |                                                                                                    | TYPE OF SURFACE SEAL:                                            | thank Corect                                                     |
| ACAD: FORM_MWFM.dwg | FLUSH MOUNT—                                                                                       | TYPE OF PROTECTIVE CASING:_                                      |                                                                  |
| ORM                 | SURFACE CASING WITH LOCK                                                                           | I.D. OF PROTECTIVE CASING:                                       | -6 <sup>1</sup> 1                                                |
| SAD: FI             |                                                                                                    | DIAMETER OF HOLE:                                                | ₹ <sup>1</sup>                                                   |
| ₹                   |                                                                                                    | TYPE OF RISER PIPE:                                              |                                                                  |
|                     |                                                                                                    |                                                                  |                                                                  |
|                     |                                                                                                    | RISER PIPE I.D.:                                                 | <b>\$</b>                                                        |
|                     |                                                                                                    | TYPE OF BACKFILL/SEAL:                                           | entante / grout                                                  |
|                     |                                                                                                    | TYPE OF SEAL: 30 65 Jun                                          | •                                                                |
|                     |                                                                                                    | ELEVATION/DEPTH TOP OF SAN                                       | iD:                                                              |
|                     |                                                                                                    | ELEVATION/DEPTH TOP OF SCR                                       | EEN: / 3                                                         |
|                     |                                                                                                    | TYPE OF SCREEN:                                                  |                                                                  |
|                     |                                                                                                    | SLOT SIZE x LENGTH:                                              | XUT                                                              |
|                     |                                                                                                    | TYPE OF SAND PACK: 20/3                                          | *                                                                |
|                     |                                                                                                    | TIPE OF SAND FACK                                                | 5 5 000 CPC                                                      |
|                     |                                                                                                    | DIAMETER OF HOLE IN BEDROC                                       | K: P/A                                                           |
|                     |                                                                                                    | ELEVATION / DEPTH BOTTOM C                                       | OF SCREEN:/ 13.40                                                |
|                     |                                                                                                    | ELEVATION / DEPTH BOTTOM O                                       |                                                                  |
|                     |                                                                                                    | ELEVATION/DEPTH BOTTOM OF                                        | · · · · · · · · · · · · · · · · · · ·                            |
|                     |                                                                                                    | BACKFILL MATERIAL BELOW SA                                       | ND: 20/30                                                        |
|                     |                                                                                                    | 3-d perh                                                         |                                                                  |

| WELL | NO.: | MW-09D |
|------|------|--------|
|      |      |        |
|      |      |        |



Tetra Tech NUS, Inc.

|                     | PROJECT Signer Large PROJECT NO. 270-075 DATE BEGUN 5 7 08 FIELD GEOLOGIST GROUND ELEVATION | LOCATION NAS Key West BORING DRILLER DRILLING METHOD DATUM DEVELOPMEN METHOD |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN.                 |                                                                                             | ELEVATION TOP OF RISER:                                                      | N/A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 67/26/99            |                                                                                             | TYPE OF SURFACE SEAL: Portland Con                                           | <u>et</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ACAD: FORM_MWFM.dwg | FLUSH MOUNT————————————————————————————————————                                             | TYPE OF PROTECTIVE CASING: Stal was                                          | thete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FORM.               | WITH LOCK                                                                                   | I.D. OF PROTECTIVE CASING:                                                   | <del>,,,,,</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ACAD:               |                                                                                             | DIAMETER OF HOLE:                                                            | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     |                                                                                             | TYPE OF RISER PIPE:                                                          | And Control of the Co |
|                     |                                                                                             | RISER PIPE I.D.: PNC & 2'                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                             | TYPE OF BACKFILL/SEAL: bentonte/g                                            | out -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                             | ELEVATION/DEPTH TOP OF SEAL:  TYPE OF SEAL: 30/65 fine saling                | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     |                                                                                             | ELEVATION/DEPTH TOP OF SAND:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                             | ELEVATION/DEPTH TOP OF SCREEN:                                               | 19 H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     |                                                                                             | SLOT SIZE × LENGTH: 0.01 × 10                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                             | TYPE OF SAND PACK: 20 30 Silica                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                             | DIAMETER OF HOLE IN BEDROCK: N/A                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                                                                             | ELEVATION / DEPTH BOTTOM OF SCREEN:                                          | 124.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                             | ELEVATION / DEPTH BOTTOM OF SAND:                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     |                                                                                             | ELEVATION/DEPTH BOTTOM OF HOLE:                                              | 125.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                             | BACKFILL MATERIAL BELOW SAND: 20 30                                          | -<br>Mariem etcoloris                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                     |                                                                                             |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





**Created By** John Wright **Modified By** Gary Braganza **Printed By** Gary Braganza **Created Date** 5/8/08 **Modified Date** 5/8/08 **Printed Date** 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-04 - Development

TtNUS Project # 112G00979Well IDKWSMMW-04Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary BraganzaStatusWorkingConcentration Low concentration

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)     | 3.04 |                         |         |
|------------------------------------|------------------------|------------------------------|------|-------------------------|---------|
| Purge Method                       | Low flow - peristaltic | ` '                          |      | TT 4 O P4 N.C.4         |         |
| Sampling Method                    | na                     | Total Well Depth (ft.)       | 15   | Water Quality Meter     |         |
| • 0                                | iiu                    | Well Riser Diameter (in.)    | 2    | <b>Pump Control Box</b> | No Data |
| MS/MSD Collected?                  |                        | Well Volumes Reg.            | 1    | <b>Turbidity Meter</b>  |         |
| <b>Duplicate Sample Collected?</b> | N                      | -                            |      | Turblaity Meter         |         |
| Corresponding Duplicate Sample II  | )                      | <b>Monitor Reading (ppm)</b> | na   |                         |         |

#### Purge Entries

| Date   | Time  | Water<br>Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | рН<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|--------|-------|-------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/8/08 | 16:35 | 3.16                    | 200                      | Clear | 6.95         | 31241        | 0.43         | -1.34               | 27.89          | -275.2      | na           |       | 0                             |
| 5/8/08 | 16:41 | 3.16                    | 200                      | Clear | 6.94         | 31241        | 0.44         | -1.30               | 27.90          | -275.3      | na           |       | 1200                          |
| 5/8/08 | 16:48 | 3.16                    | 200                      | Clear | 6.94         | 31241        | 0.40         | -1.22               | 27.92          | -275.6      | na           |       | 1400                          |
| 5/8/08 | 16:56 | 3.16                    | 200                      | Clear | 6.93         | 31241        | 0.40         | -1.23               | 27.92          | -275.8      | na           |       | 1600                          |
| Page 1 | of 2  |                         |                          |       |              |              |              |                     |                |             |              |       |                               |

Page 1 of 2

| One Casing Volume              |            | Method               | Low flow - peristaltic | Dissolved Oxygen (mg/L) 0.40 |        |  |
|--------------------------------|------------|----------------------|------------------------|------------------------------|--------|--|
| O                              | 4.2        | Waterlevel (ft.)     | 3.16                   | <b>Turbidity (NTUs)</b>      | -1.23  |  |
| Total Vo. Purge (L)            | 4.2        | Flowrate (mL/min)    | 200                    | Temp (C)                     | 27.92  |  |
| Start Purge (hrs.)             | 4:35:00 PM | Color                | Clear                  | ORP (mV)                     | -275.8 |  |
| End Purge (hrs.)               | 4:56:00 PM | pH (S.U.)            | 6.93                   | Salinity                     | na     |  |
| <b>Total Purge Time (min.)</b> | 21         | Conductivity (mS/cm) | 31241                  | Other                        |        |  |

approximately 25 gallons purged from well earlier today with centrifugal pump - End of Report -

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/8/08 Printed Date 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-05 - Development TtNUS Project # 112G00979 Well ID KWSMMW-05

Task/Contract # 0095 Well Type Monitoring Well WBS Code # Sampled By Gary Braganza

Status Working Concentration Medium concentration

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)     | 3.25       |                        |            |
|------------------------------------|------------------------|------------------------------|------------|------------------------|------------|
| Purge Method                       | Low flow - peristaltic | ` ,                          | 3.23<br>15 | Water Ovality Mater    | . 06V 1092 |
| Sampling Method                    | na                     | • ` '                        |            | Water Quality Meter    |            |
| MS/MSD Collected?                  |                        | Well Riser Diameter (in.)    | ) 2        | •                      | No Data    |
| <b>Duplicate Sample Collected?</b> | N                      | Well Volumes Req.            | I          | <b>Turbidity Meter</b> | PN-26858   |
| Corresponding Duplicate Sample I   | D                      | <b>Monitor Reading (ppm)</b> | na         |                        |            |

#### Purge Entries

| Date   |         | Water<br>Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | pH<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|--------|---------|-------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/8/08 | 3 14:00 | 3.25                    | 200                      | Clear | 7.1          | 46779        | 0.14         | -1.24               | 26.71          | -291.8      | na           |       | 0                             |
| 5/8/08 | 14:05   | 3.25                    | 200                      | Clear | 7.10         | 46961        | 0.11         | -2.4                | 26.67          | -295        | na           |       | 1000                          |
| 5/8/08 | 3 14:11 | 3.25                    | 200                      | Clear | 7.10         | 47053        | 0.10         | -1.20               | 26.67          | -295.6      | na           |       | 1200                          |
| 5/8/08 | 3 14:16 | 3.25                    | 200                      | Clear | 7.10         | 47140        | 0.10         | -1.23               | 26.68          | -296        | na           |       | 1000                          |
| Page 1 | of 2    |                         |                          |       |              |              |              |                     |                |             |              |       |                               |

| One Casing Volume                 |            | Method                     | Low flow - peristaltic | Dissolved Oxygen (mg/L) | 0.10  |
|-----------------------------------|------------|----------------------------|------------------------|-------------------------|-------|
| O                                 | 2.2        | Waterlevel (ft.)           | 3.25                   | <b>Turbidity (NTUs)</b> | -1.23 |
| Total Vo. Purge (L)               | 3.2        | Flowrate (mL/min)          | 200                    | Temp (C)                | 26.68 |
| Start Purge (hrs.)                | 2:00:00 PM | Color                      | Clear                  | ORP (mV)                | -296  |
| <b>End Purge (hrs.)</b> 2:16:00 F |            | pH (S.U.)                  | 7.10                   | Salinity                | na    |
| <b>Total Purge Time (min.)</b>    | 16         | Conductivity (mS/cm) 47140 |                        | Other                   |       |

wells previously purged with whale pump. Approximately 18 gallons of groundwater removed.

- End of Report -

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/8/08 Printed Date 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-06 - Development TtNUS Project # 112G00979 Well ID KWSMMW-06

Task/Contract # 0095 Well Type Monitoring Well WBS Code # Sampled By Gary Braganza

Status Working Concentration Low concentration

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)     | 3.14 |                         |          |
|------------------------------------|------------------------|------------------------------|------|-------------------------|----------|
| Purge Method                       | Low flow - peristaltic | ` '                          |      |                         |          |
| Sampling Method                    | •                      | Total Well Depth (ft.)       | 13   | Water Quality Meter     | ſ        |
| 1 0                                |                        | Well Riser Diameter (in.     | ) 2  | <b>Pump Control Box</b> | No Data  |
| MS/MSD Collected?                  |                        | Well Volumes Req.            |      | Turbidity Meter         | No Data  |
| <b>Duplicate Sample Collected?</b> | N                      | -                            | -    | Turblaity Meter         | 110 Data |
| Corresponding Duplicate Sample II  | )                      | <b>Monitor Reading (ppm)</b> |      |                         |          |

#### Purge Entries

| Date  | e ' | Time  | Water<br>Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | pH<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|-------|-----|-------|-------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/8/0 | 08  | 16:01 | 3.19                    | 200                      | Clear | 6.99         | 31234        | 0.65         | -1.23               | 28.42          | -265.2      | na           |       | 0                             |
| 5/8/0 | 08  | 16:07 | 3.19                    | 200                      | Clear | 6.98         | 31233        | 0.58         | -1.20               | 28.40          | -265.5      | na           |       | 1200                          |
| 5/8/0 | 08  | 16:16 | 3.19                    | 200                      | Clear | 6.98         | 31233        | 0.52         | -1.14               | 28.40          | -265.0      | na           |       | 1800                          |
| 5/8/0 | 08  | 16:25 | 3.19                    | 200                      | Clear | 6.98         | 31233        | 0.50         | -1.11               | 28.40          | -265.0      | na           |       | 1800                          |
| Page  | e 1 | of 2  |                         |                          |       |              |              |              |                     |                |             |              |       |                               |

| One Cosing Volume       |            | Method                    | Low flow - peristaltic | Dissolved Oxygen (mg/L) | 0.50   |
|-------------------------|------------|---------------------------|------------------------|-------------------------|--------|
| One Casing Volume       |            | Waterlevel (ft.)          | 3.19                   | Turbidity (NTUs)        | -1.11  |
| Total Vo. Purge (L)     | 4.8        | Flowrate (mL/min)         | 200                    | Temp (C)                | 28.40  |
| Start Purge (hrs.)      | 4:01:00 PM |                           |                        | • '                     | -265.0 |
| End Purge (hrs.)        | 4:25:00 PM | Color                     | Clear                  | ORP (mV)                | -203.0 |
| Total Purge Time (min.) | 24         | <b>pH</b> ( <b>S.U.</b> ) | 6.98                   | Salinity                | na     |
| Total Turge Time (mm.)  | , 24       | Conductivity (mS/cm)      | 31233                  | Other                   |        |

approximately 20 gallons purged from well earlier today with a whale pump. Water clears after development - End of Report -

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/8/08 Printed Date 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-07 - Development

TtNUS Project # 112G00979Well IDKWSMMW-07Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary Braganza

Status Working Concentration - Select-

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)     |    |                         |         |
|------------------------------------|------------------------|------------------------------|----|-------------------------|---------|
| Purge Method                       | Low flow - peristaltic | Total Well Depth (ft.)       | 12 | W-4 O1'4 M-4            |         |
| Sampling Method                    |                        | Total Well Depth (It.)       | 13 | water Quality Meter     | '       |
|                                    |                        | Well Riser Diameter (in.)    | 2  | <b>Pump Control Box</b> | No Data |
| MS/MSD Collected?                  |                        | Well Volumes Req.            | 1  | Turbidity Motor         |         |
| <b>Duplicate Sample Collected?</b> | N                      | -                            | 1  | Turblatty Weter         |         |
| Corresponding Duplicate Sample II  | )                      | <b>Monitor Reading (ppm)</b> |    |                         |         |

#### Purge Entries

| Date   |       | Water<br>Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | pH<br>(S.U.) | S.C.<br>(mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|--------|-------|-------------------------|--------------------------|-------|--------------|-----------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/8/08 | 15:25 | 3.10                    | 200                      | Clear | 7.67         | 31395           | 1.25         | -2.3                | 27.51          | -283.4      | na           | -     | 0                             |
| 5/8/08 | 15:31 | 3.10                    | 200                      | Clear | 7.366        | 31247           | 0.56         | -123                | 27.29          | -284.2      | na           |       | 1200                          |
| 5/8/08 | 15:40 | 3:10                    | 200                      | Clear | 7.36         | 31246           | 0.49         | -1.20               | 27.28          | -284.2      | na           | -     | 1800                          |
| 5/8/08 | 15:45 | 3.10                    | 200                      | Clear | 7.36         | 31245           | 0.45         | -1.14               | 27.27          | -284.2      | na           |       | 1000                          |
| Page 1 | of 2  |                         |                          |       |              |                 |              |                     |                |             |              |       |                               |

| One Cosing Volume          |                                   | Method               | Low flow - peristaltic | Dissolved Oxygen (mg/L) | 0.45   |
|----------------------------|-----------------------------------|----------------------|------------------------|-------------------------|--------|
| One Casing Volume          | 4                                 | Waterlevel (ft.)     | 3.10                   | <b>Turbidity (NTUs)</b> | -1.14  |
| Total Vo. Purge (L)        | 4                                 | Flowrate (mL/min)    | 200                    | Temp (C)                | 27.27  |
| Start Purge (hrs.)         | 3:25:00 PM                        | Color                | Clear                  | ORP (mV)                | -284.2 |
| End Purge (hrs.)           | <b>nd Purge (hrs.)</b> 3:45:00 PM |                      | 7.36                   | Salinity                |        |
| Total Purge Time (min.) 20 |                                   | pH (S.U.)            |                        | ·                       | na     |
|                            |                                   | Conductivity (mS/cm) | 31245                  | Other                   |        |

No Notes

- End of Report -

**Created By** John Wright **Modified By** Gary Braganza **Printed By** Gary Braganza **Created Date** 5/8/08 **Modified Date** 5/8/08 **Printed Date** 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-08 - Development

TtNUS Project # 112G00979Well IDKWSMMW-08Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary Braganza

Status Working Concentration - Select-

#### Well and Sample Data

Date
Purge Method
Low flow - peristaltic

To a LW UP and Con

Sampling Method

Total Well Depth (ft.)

13 Water Quality Meter

MS/MSD Collected?

Well Riser Diameter (in.) 2 Pump Control Box No Data

Well Volumes Req. 1 Turbidity Meter

Duplicate Sample Collected? N

Monitor Reading (ppm)

**Corresponding Duplicate Sample ID** 

#### Purge Entries

| Date   | Time  | Water<br>Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | рН<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>° | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|--------|-------|-------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|-----------|-------------|--------------|-------|-------------------------------|
| 5/8/08 | 14:25 | 2.27                    | 200                      | Clear | 6.99         | 54033        | 0.57         | -1.30               | 27.99     | -321.5      | na           |       | 0                             |
| 5/8/08 | 14:31 | 2.30                    | 200                      | Clear | 6.92         | 54137        | 0.32         | -1.20               | 27.94     | -323.5      | na           | -     | 1200                          |
| Page 1 | of 2  |                         |                          |       |              |              |              |                     |           |             |              |       |                               |

| One Casing Volume         |            | Method               | Low flow - peristaltic | Dissolved Oxygen (mg/L) |  |
|---------------------------|------------|----------------------|------------------------|-------------------------|--|
| O                         | 1.0        | Waterlevel (ft.)     |                        | Turbidity (NTUs)        |  |
| Total Vo. Purge (L)       | 1.2        | Flowrate (mL/min)    |                        | Temp (C)                |  |
| Start Purge (hrs.)        | 2:25:00 PM |                      |                        | ORP (mV)                |  |
| End Purge (hrs.)          | 2:31:00 PM | Color                |                        | ,                       |  |
| Total Purge Time (min.)   | 16         | <b>pH</b> (S.U.)     | Salinity<br>Other      |                         |  |
| iouni uige iinie (iinii.) | , 0        | Conductivity (mS/cm) |                        |                         |  |

No Notes

- End of Report -



**Created By** John Wright **Modified By** Gary Braganza **Printed By** Gary Braganza **Created Date** 5/8/08 **Modified Date** 5/8/08 **Printed Date** 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-09D - Development

TtNUS Project # 112G00979Well IDKWSMMW-09DTask/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary Braganza

Status Working Concentration - Select-

#### Well and Sample Data

**Date Static Water Level (ft.)** Low flow - peristaltic **Purge Method** Total Well Depth (ft.) 25 Water Quality Meter **Sampling Method** Well Riser Diameter (in.) 2 **Pump Control Box** No Data MS/MSD Collected? Well Volumes Req. **Turbidity Meter Duplicate Sample Collected?** N Monitor Reading (ppm) **Corresponding Duplicate Sample ID** 

#### Purge Entries

| Date   | Time    | Level  | Flow<br>Rate<br>(mL/min) | Color | pH<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|--------|---------|--------|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/8/08 | 3 14:50 | 2.67   | 200                      | Clear | 7.27         | 50836        | 1.05         | -1.39               | 27.49          | -220.5      | na           | -     | 0                             |
| 5/8/08 | 14:56   | 5 2.67 | 200                      | Clear | 7.27         | 51130        | 1.14         | -1.34               | 7.27           | -215.3      | na           |       | 1200                          |
| 5/8/08 | 3 15:13 | 3 2.67 | 200                      | Clear | 7.28         | 51652        | 1.35         | -134                | 7.29           | -214.9      | na           |       | 3400                          |
| Page 1 | l of 2  |        |                          |       |              |              |              |                     |                |             |              |       |                               |

| One Casing Volume         |            | Method                    | Low flow - peristaltic | Dissolved Oxygen (mg/L) |  |
|---------------------------|------------|---------------------------|------------------------|-------------------------|--|
| G                         | 4 6        | Waterlevel (ft.)          |                        | Turbidity (NTUs)        |  |
| Total Vo. Purge (L)       | 4.6        | Flowrate (mL/min)         |                        | Temp (C)                |  |
| Start Purge (hrs.)        | 2:50:00 PM | Color                     |                        | ORP (mV)                |  |
| End Purge (hrs.)          | 3:13:00 PM |                           |                        | ` /                     |  |
| Total Purge Time (min.)   | 23         | <b>pH</b> ( <b>S.U.</b> ) | Salinity               |                         |  |
| Total Turge Time (mm.) 23 |            | Conductivity (mS/cm)      | Other                  |                         |  |

No Notes

- End of Report -



Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/13/08 Printed Date 9/3/08

#### **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility NameKEY WEST NASSample ID #KWSMMW-04-0508TtNUS Project # 112G00979Well IDKWSMMW-04Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary BraganzaStatusWorkingConcentration

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)  | 3.90 |                         |             |  |
|------------------------------------|------------------------|---------------------------|------|-------------------------|-------------|--|
| Purge Method                       | Low flow - peristaltic |                           |      | TT 4 O 114 N. 4         | 0.617.1.000 |  |
| Sampling Method                    | peristaltic            | Total Well Depth (ft.)    | 15   | Water Quality Meter     | 06K1082     |  |
| • 0                                | peristante             | Well Riser Diameter (in.) | 2    | <b>Pump Control Box</b> | No Data     |  |
| MS/MSD Collected?                  |                        | ` '                       | 1    | •                       |             |  |
| <b>Duplicate Sample Collected?</b> | N                      | Well Volumes Req.         | 1    | <b>Turbidity Meter</b>  | PN-26858    |  |
| •                                  | -,                     | Monitor Reading (ppm)     | na   |                         |             |  |
| Corresponding Duplicate Sample II  | )                      | 3 41 /                    |      |                         |             |  |

#### Purge Entries

| Date    | Wa<br>Time Lev<br>(ft. | vel | Flow<br>Rate<br>(mL/min) | Color | рН<br>(S.U.) | S.C.<br>(mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity<br>(%) | Other | Incremental Volume (mL) |
|---------|------------------------|-----|--------------------------|-------|--------------|-----------------|--------------|---------------------|----------------|-------------|-----------------|-------|-------------------------|
| 5/12/08 | 08:25 3.9              | 0   | 150                      | Clear | -            | -               | -            | -                   | -              | -           | -               | -     | 0                       |
| 5/12/08 | 08:51 4.1              | 3   | 150                      | Clear | 7.18         | 49349           | 0.98         | 1.2                 | 26.52          | -312.5      | -               | -     | 3900                    |
| 5/12/08 | 08:54 4.1              | 4   | 150                      | Clear | 7.18         | 49237           | 0.95         | 1.2                 | 26.51          | -314.4      | -               | -     | 450                     |
| 5/12/08 | 08:57 4.1              | 4   | 150                      | Clear | 7.16         | 47710           | 0.87         | 2.1                 | 26.49          | -315.2      | -               | -     | 450                     |
| 5/12/08 | 09:02 3.1              | 4   | 150                      | Clear | 7.16         | 47715           | 0.87         | 2.1                 | 26.47          | -314.2      | -               | -     | 750                     |
| 5/12/08 | 09:06 3.1              | 4   | 150                      | Clear | 7.15         | 47380           | 0.95         | 1.2                 | 26.45          | -316.5      | -               | -     | 600                     |
| D 1     | 6.0                    |     |                          |       |              |                 |              |                     |                |             |                 |       |                         |

Page 1 of 2

# Final Purge / Sample Data

| One Casing Volume          |            | Method              | Low flow - peristaltic | Dissolved Oxygen (mg/L) | 0.95   |
|----------------------------|------------|---------------------|------------------------|-------------------------|--------|
| O                          | C 15       | Waterlevel (ft.)    | 3.14                   | <b>Turbidity (NTUs)</b> | 1.2    |
| Total Vo. Purge (L)        | 6.15       | Flowrate (mL/min)   | 150                    | Temp (C)                | 26.45  |
| Start Purge (hrs.)         | 8:25:00 AM | Color               | Clear                  | ORP (mV)                | -316.5 |
| End Purge (hrs.)           | 9:06:00 AM | pH (S.U.)           | 7.15                   | Salinity                | _      |
| Total Purge Time (min.) 41 |            | Conductivity (mS/cm |                        | Other                   | -      |



Tetra Tech NUS, Inc. GROUNDWATER SAMPLE LOG

Well Installation and Sampling - KEY WEST NAS

## Analysis Records

| Collected | d Date Time   | Analysis /<br>Method | Description<br>of<br>Analysis | Preservative | e Count | Туре             | Requirements Comments | s Chain#         |
|-----------|---------------|----------------------|-------------------------------|--------------|---------|------------------|-----------------------|------------------|
| ×         | 5/12/08 09:09 | SW-846<br>5030B/8260 | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3       | Glass - Clear    | 40ml vials            | ED00000076-<br>1 |
| ×         | 5/12/08 09:09 | SW-846 8270C SIM     | PAHs                          | 4°C          | 2       | Glass -<br>Amber | 1L                    | ED00000076-<br>1 |
| ×         | 5/12/08 09:09 | FL-PRO               | TRPH                          | 4°C/H2SO4    | 2       | Glass -<br>Amber | 1L                    | ED00000076-      |

Page 2 of 2

General Observations and Notes

No Notes

- End of Report -

#### **GROUNDWATER SAMPLE LOG**

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/13/08 Printed Date 9/3/08

## **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility NameKEY WEST NASSample ID #KWSMMW-05-0508TtNUS Project # 112G00979Well IDKWSMMW-05Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary BraganzaStatusWorkingConcentration -Select-

#### Well and Sample Data

| Date                              |                        | Static Water I aval (ft )    | 2 62 |                         |          |
|-----------------------------------|------------------------|------------------------------|------|-------------------------|----------|
| Purge Method                      | Low flow - peristaltic | 2 ****** (-**)               | 3.62 | W-4 O                   | 06V1002  |
| Sampling Method                   | peristaltic            | <b>I</b>                     | 15   | Water Quality Meter     |          |
| MS/MSD Collected?                 | 1                      | Well Riser Diameter (in.)    | 2    | <b>Pump Control Box</b> | No Data  |
|                                   | N                      | Well Volumes Req.            | 1    | <b>Turbidity Meter</b>  | PN-26858 |
| Duplicate Sample Collected?       | - 1                    | <b>Monitor Reading (ppm)</b> | -    |                         |          |
| Corresponding Duplicate Sample II | )                      | 0 41 /                       |      |                         |          |

#### Purge Entries

| Date    | Water<br>Time Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | рН<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|---------|------------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/12/08 | 11:17 3.62                   | 150                      | Clear | -            | -            | -            | -                   |                | -           | -            | -     | 0                             |
| 5/12/08 | 11:43 2.84                   | 150                      | Clear | 6.99         | 52087        | 0.38         | 4.3                 | 27.02          | -315.8      | -            | -     | 3900                          |
| 5/12/08 | 11:46 2.84                   | 150                      | Clear | 6.99         | 52017        | 0.33         | 3.5                 | 27.03          | -317.4      | -            | -     | 450                           |
| 5/12/08 | 11:49 2.83                   | 150                      | Clear | 6.99         | 51957        | 0.31         | 5.4                 | 27.02          | -318.0      | -            | -     | 450                           |
| 5/12/08 | 11:52 2.83                   | 150                      | Clear | 6.99         | 51923        | 0.30         | 3.2                 | 27.03          | -318.2      | -            | -     | 450                           |
| Page 1  | of 2                         |                          |       |              |              |              |                     |                |             |              |       |                               |

# Final Purge / Sample Data

| One Casing Volume          |                         | Method                     | Low flow - peristaltic | Dissolved Oxygen (mg/L  | 0.30   |
|----------------------------|-------------------------|----------------------------|------------------------|-------------------------|--------|
| O                          | otal Vo. Purge (L) 5.25 |                            | 2.83                   | <b>Turbidity (NTUs)</b> | 3.2    |
| Ø . ,                      |                         | Flowrate (mL/min)          | 150                    | Temp (C)                | 27.03  |
| Start Purge (hrs.)         | 11:17:00 AM             | Color                      | Clear                  | ORP (mV)                | -318.2 |
| End Purge (hrs.)           | 11:52:00 AM             | pH (S.U.)                  | 6.99                   | Salinity                | _      |
| Total Purge Time (min.) 35 |                         | Conductivity (mS/cm) 51923 |                        | Other                   | -      |



Tetra Tech NUS, Inc. GROUNDWATER SAMPLE LOG

Well Installation and Sampling - KEY WEST NAS

## Analysis Records

| Collected | d Date Time   | Analysis /<br>Method | Description<br>of<br>Analysis | Preservative | e Coun | t Type           | Requirements Comments | s Chain#         |
|-----------|---------------|----------------------|-------------------------------|--------------|--------|------------------|-----------------------|------------------|
| ×         | 5/12/08 11:56 | SW-846<br>5030B/8260 | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3      | Glass - Clear    | 40ml vials            | ED00000076-      |
| ×         | 5/12/08 11:56 | 5 SW-846 8270C SIM   | I PAHs                        | 4°C          | 2      | Glass -<br>Amber | 1L                    | ED00000076-<br>1 |
| ×         | 5/12/08 11:56 | FL-PRO               | TRPH                          | 4°C/H2SO4    | 2      | Glass -<br>Amber | 1L                    | ED00000076-      |

Page 2 of 2

General Observations and Notes

No Notes

- End of Report -



#### **GROUNDWATER SAMPLE LOG**

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/13/08 Printed Date 9/3/08

# **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility NameKEY WEST NASSample ID #KWSMMW-06-0508TtNUS Project # 112G00979Well IDKWSMMW-06Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary BraganzaStatusWorkingConcentration

#### Well and Sample Data

| Date                               |                        | Static Water I evel (ft )    | 4.30 |                         |             |
|------------------------------------|------------------------|------------------------------|------|-------------------------|-------------|
| Purge Method                       | Low flow - peristaltic | Static Water Level (ft.)     |      | W . O . P. M            | 0.617.1.000 |
| Sampling Method                    | peristaltic            | Total Well Depth (ft.)       | 13   | Water Quality Meter     | 06K1082     |
| 1 0                                | peristance             | Well Riser Diameter (in.)    | 2    | <b>Pump Control Box</b> | No Data     |
| MS/MSD Collected?                  |                        | ` '                          | 1    | •                       | PN-26858    |
| <b>Duplicate Sample Collected?</b> | N                      | Well Volumes Req.            | 1    | <b>Turbidity Meter</b>  | FIN-20030   |
| •                                  |                        | <b>Monitor Reading (ppm)</b> | na   |                         |             |
| Corresponding Duplicate Sample ID  | •                      |                              |      |                         |             |

#### Purge Entries

| Date    | Water<br>Time Level<br>(ft.) |     | Color | рН<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental Volume (mL) |
|---------|------------------------------|-----|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------|
| 5/12/08 | 3 09:20 3.90                 | 150 | Clear | -            | -            | -            | -                   | -              | -           | -            | -     | 0                       |
| 5/12/08 | 3 09:41 4.10                 | 150 | Clear | 7.22         | 32775        | 0.93         | 1.34                | 26.57          | -276.6      | -            | -     | 3150                    |
| 5/12/08 | 3 09:47 4.10                 | 150 | Clear | 7.17         | 32728        | 0.55         | 3.2                 | 26.55          | -282.1      | -            | -     | 900                     |
| 5/12/08 | 3 09:50 4.10                 | 150 | Clear | 7.16         | 32723        | 0.51         | 4.3                 | 26.54          | -281.4      | -            | -     | 450                     |
| 5/12/08 | 3 09:53 4.10                 | 150 | Clear | 7.15         | 32722        | 0.51         | 2.1                 | 26.54          | -281.6      | -            | -     | 450                     |
| 5/12/08 | 3 09:56 4.10                 | 150 | Clear | 7.15         | 32713        | 0.47         | 3.2                 | 26.55          | -283.2      | -            | -     | 450                     |
| D 1     | C 2                          |     |       |              |              |              |                     |                |             |              |       |                         |

Page 1 of 2

# Final Purge / Sample Data

| One Casing Volume       |            | Method              | Low flow - peristaltic | Dissolved Oxygen (mg/L) | 0.47   |
|-------------------------|------------|---------------------|------------------------|-------------------------|--------|
| O                       | F 1        | Waterlevel (ft.)    | 4.10                   | <b>Turbidity (NTUs)</b> | 3.2    |
| Total Vo. Purge (L)     | 5.4        | Flowrate (mL/min)   | 150                    | Temp (C)                | 26.55  |
| Start Purge (hrs.)      | 9:20:00 AM |                     | Clear                  | ORP (mV)                | -283.2 |
| End Purge (hrs.)        | 9:56:00 AM | pH (S.U.)           | 7.15                   | Salinity                | _      |
| Total Purge Time (min.) | ) 36       | Conductivity (mS/cm |                        | Other                   | -      |



Tetra Tech NUS, Inc. GROUNDWATER SAMPLE LOG

Well Installation and Sampling - KEY WEST NAS

## Analysis Records

| Collected | l Date Tim   | e Analysis /<br>Method | Description<br>of<br>Analysis | Preservative | e Count | t Type           | Requirements Comments | s Chain#         |
|-----------|--------------|------------------------|-------------------------------|--------------|---------|------------------|-----------------------|------------------|
| ×         | 5/12/08 10:0 | 3 SW-846<br>5030B/8260 | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3       | Glass - Clear    | 40ml vials            | ED00000076-<br>1 |
| ×         | 5/12/08 10:0 | 3 SW-846 8270C SIM     | I PAHs                        | 4°C          | 2       | Glass -<br>Amber | 1L                    | ED00000076-<br>1 |
| ×         | 5/12/08 10:0 | 3 FL-PRO               | TRPH                          | 4°C/H2SO4    | 2       | Glass -<br>Amber | 1L                    | ED00000076-      |

Page 2 of 2

General Observations and Notes

No Notes

- End of Report -



#### **GROUNDWATER SAMPLE LOG**

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/13/08 Printed Date 9/3/08

## **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility NameKEY WEST NASSample ID #KWSMMW-07-0508TtNUS Project # 112G00979Well IDKWSMMW-07Task/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary BraganzaStatusWorkingConcentrationLow concentration

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)     | 4.22 |                         |           |
|------------------------------------|------------------------|------------------------------|------|-------------------------|-----------|
| Purge Method                       | Low flow - peristaltic |                              |      |                         | 0.61.1000 |
| Sampling Method                    | peristaltic            | Total Well Depth (ft.)       | 13   | Water Quality Meter     | 06K1082   |
| • 0                                | peristante             | Well Riser Diameter (in.)    | 2    | <b>Pump Control Box</b> | No Data   |
| MS/MSD Collected?                  |                        | ` '                          | 1    | •                       |           |
| <b>Duplicate Sample Collected?</b> | N                      | Well Volumes Req.            | 1    | <b>Turbidity Meter</b>  | PN-26858  |
| •                                  | -,                     | <b>Monitor Reading (ppm)</b> | NA   |                         |           |
| Corresponding Duplicate Sample II  | )                      | 3 41 /                       |      |                         |           |

#### Purge Entries

| Date    | Time L  |     | Flow<br>Rate<br>(mL/min) | Color | pH<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|---------|---------|-----|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/12/08 | 10:15 4 | .22 | 150                      | Clear | -            | -            | -            | -                   | -              | -           | -            | -     | 0                             |
| 5/12/08 | 10:43 4 | .45 | 150                      | Clear | 7.12         | 30865        | 0.56         | 1.45                | 27.00          | -274.3      | -            | -     | 4200                          |
| 5/12/08 | 10:46 4 | .42 | 150                      | Clear | 7.12         | 29856        | 0.54         | 3.2                 | 27.03          | -273.3      | -            | -     | 450                           |
| 5/12/08 | 10:50 4 | .42 | 150                      | Clear | 7.12         | 29927        | 0.51         | 3.2                 | 27.04          | -279.5      | -            | -     | 600                           |
| 5/12/08 | 10:54 4 | .42 | 150                      | Clear | 7.12         | 29945        | 0.48         | 3.6                 | 27.06          | -280.2      | -            | -     | 600                           |
| 5/12/08 | 10:59 4 | .42 | 150                      | Clear | 7.13         | 29965        | 0.46         | 5.4                 | 27.07          | -280.3      | -            | -     | 750                           |
| D 1 .   | 6.2     |     |                          |       |              |              |              |                     |                |             |              |       |                               |

# Final Purge / Sample Data

| One Casing Volume       |             | Method              | Low flow - peristaltic | Dissolved Oxygen (mg/L) 0.4 |        |  |
|-------------------------|-------------|---------------------|------------------------|-----------------------------|--------|--|
| O                       |             | Waterlevel (ft.)    | 4.42                   | Turbidity (NTUs)            | 5.4    |  |
| Total Vo. Purge (L)     | 6.6         | Flowrate (mL/min)   | 150                    | Temp (C)                    | 27.07  |  |
| Start Purge (hrs.)      | 10:15:00 AM | Color               | Clear                  | ORP (mV)                    | -280.3 |  |
| End Purge (hrs.)        | 10:59:00 AM |                     |                        | ` ,                         | -200.3 |  |
| Total Purge Time (min.) | ) 44        | <b>pH</b> (S.U.)    | 7.13                   | Salinity                    | -      |  |
| Total Large Time (mine) | ,           | Conductivity (mS/cm | ) 29965                | Other                       | -      |  |



Tetra Tech NUS, Inc. GROUNDWATER SAMPLE LOG

Well Installation and Sampling - KEY WEST NAS

## Analysis Records

| Collected | d Date Time   | Analysis /<br>Method   | Description<br>of<br>Analysis | Preservative | e Count | Туре             | Requirements Comments | s Chain#         |
|-----------|---------------|------------------------|-------------------------------|--------------|---------|------------------|-----------------------|------------------|
| ×         | 5/12/08 11:07 | 7 SW-846<br>5030B/8260 | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3       | Glass - Clear    | 40ml vials            | ED00000076-<br>1 |
| ×         | 5/12/08 11:07 | 7 SW-846 8270C SIM     | PAHs                          | 4°C          | 2       | Glass -<br>Amber | 1L                    | ED00000076-<br>1 |
| ×         | 5/12/08 11:07 | 7 FL-PRO               | TRPH                          | 4°C/H2SO4    | 2       | Glass -<br>Amber | 1L                    | ED00000076-      |

Page 2 of 2

General Observations and Notes

No Notes

- End of Report -



#### **GROUNDWATER SAMPLE LOG**

Created By John Wright Modified By Gary Braganza Printed By Gary Braganza Created Date 5/8/08 Modified Date 5/13/08 Printed Date 9/3/08

# **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility Name KEY WEST NAS Sample ID # KWSMMW-08-0508

TtNUS Project # 112G00979 Well ID KWSMMW-08

Task/Contract # 0095 Well Type Monitoring Well

WBS Code # Sampled By Gary Braganza

Status Working Concentration Medium concentration

#### Well and Sample Data

| Date                               |                          | Static Water Level (ft.)     | 3.39 |                         |            |
|------------------------------------|--------------------------|------------------------------|------|-------------------------|------------|
| Purge Method                       | Low flow - peristaltic   | ` '                          |      | NV. 4 O . P4 M. 4.      | 0.617.1002 |
| Sampling Method                    | peristaltic              | Total Well Depth (ft.)       | 13   | Water Quality Meter     | 06K1082    |
| • 0                                | peristante               | Well Riser Diameter (in.)    | 2    | <b>Pump Control Box</b> | No Data    |
| MS/MSD Collected?                  |                          | ` ′                          | 1    | •                       |            |
| <b>Duplicate Sample Collected?</b> | V                        | Well Volumes Req.            | 1    | <b>Turbidity Meter</b>  | PN-26858   |
|                                    | 1                        | <b>Monitor Reading (ppm)</b> | NA   |                         |            |
| Corresponding Duplicate Sample II  | <b>)</b> KWSM-FD-01-0508 | ( <b>FF</b> )                |      |                         |            |

#### Purge Entries

| Date    | Time 1  | Water<br>Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | pH<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp  ° C | ORP<br>(mV) | Salinity<br>(%) | Other | Incremental<br>Volume<br>(mL) |
|---------|---------|-------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|-----------|-------------|-----------------|-------|-------------------------------|
| 5/12/08 | 3 12:51 | 3.39                    | 150                      | Clear | -            | -            | -            | -                   |           | -           | -               | -     | 0                             |
| 5/12/08 | 3 13:20 | 3.52                    | 150                      | Clear | 7.17         | 49071        | 0.49         | 2.3                 | 27.38     | -246.7      | -               | -     | 4350                          |
| 5/12/08 | 3 13:24 | 3.52                    | 150                      | Clear | 7.12         | 49271        | 0.38         | 4.3                 | 27.35     | 263.8       | -               | -     | 600                           |
| 5/12/08 | 3 13:29 | 3.52                    | 150                      | Clear | 7.11         | 49341        | 0.33         | 3.2                 | 27.34     | -274.6      | -               | -     | 750                           |
| 5/12/08 | 3 13:34 | 3.52                    | 150                      | Clear | 7.10         | 49347        | 0.29         | 3.2                 | 27.32     | -287.1      | -               | -     | 750                           |
| 5/12/08 | 3 13:37 | 3.52                    | 150                      | Clear | 7.09         | 49364        | 0.27         | 4.3                 | 27.32     | -290.5      | -               | -     | 450                           |
| 5/12/08 | 3 13:40 | 3.52                    | 150                      | Clear | 7.09         | 49329        | 0.27         | 2.4                 | 27.30     | -293.7      | -               | -     | 450                           |

# Final Purge / Sample Data

| One Casing Volume       |             | Method              | Low flow - peristaltic | Dissolved Oxygen (mg/L) | 0.27   |
|-------------------------|-------------|---------------------|------------------------|-------------------------|--------|
| O                       | 7.25        | Waterlevel (ft.)    | 3.52                   | Turbidity (NTUs)        | 2.4    |
| Total Vo. Purge (L)     | 7.35        | Flowrate (mL/min)   | 150                    | Temp (C)                | 27.30  |
| Start Purge (hrs.)      | 12:51:00 PM | Color               | Clear                  | ORP (mV)                | -293.7 |
| End Purge (hrs.)        | 1:40:00 PM  | pH (S.U.)           | 7.09                   | Salinity                | _      |
| Total Purge Time (min.) | 49          | Conductivity (mS/cm |                        | Other                   | -      |



Tetra Tech NUS, Inc. GROUNDWATER SAMPLE LOG

Well Installation and Sampling - KEY WEST NAS

# Analysis Records

| Collected | d Date Time   | Analysis /<br>Method | Description<br>of<br>Analysis | Preservative | e Coun | t Type           | Requirements Comments | s Chain#         |
|-----------|---------------|----------------------|-------------------------------|--------------|--------|------------------|-----------------------|------------------|
| ×         | 5/12/08 13:45 | SW-846<br>5030B/8260 | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3      | Glass - Clear    | 40ml vials            | ED00000076-      |
| ×         | 5/12/08 13:45 | 5 SW-846 8270C SIM   | [ PAHs                        | 4°C          | 2      | Glass -<br>Amber | 1L                    | ED00000076-<br>1 |
| ×         | 5/12/08 13:45 | 5 FL-PRO             | TRPH                          | 4°C/H2SO4    | 2      | Glass -<br>Amber | 1L                    | ED00000076-      |

Page 2 of 2

General Observations and Notes

No Notes

- End of Report -

#### GROUNDWATER SAMPLE LOG

**Created By** John Wright **Modified By** Gary Braganza **Printed By** Gary Braganza **Created Date** 5/8/08 **Modified Date** 5/13/08 **Printed Date** 9/3/08

## **Project Information**

Well Installation and Sampling - KEY WEST NAS

Facility NameKEY WEST NASSample ID #KWSMMW-09D-0508TtNUS Project # 112G00979Well IDKWSMMW-09DTask/Contract # 0095Well TypeMonitoring WellWBS Code #Sampled ByGary BraganzaStatusWorkingConcentration Low concentration

#### Well and Sample Data

| Date                               |                        | Static Water Level (ft.)  | 3.42  |                         |            |
|------------------------------------|------------------------|---------------------------|-------|-------------------------|------------|
| Purge Method                       | Low flow - peristaltic |                           |       | NV. 4 O . P4 M. 4.      | 0.017.1000 |
| Sampling Method                    | peristaltic            | Total Well Depth (ft.)    | 25    | Water Quality Meter     | U0K1U82    |
| • 0                                | peristante             | Well Riser Diameter (in.) | ) 2   | <b>Pump Control Box</b> | No Data    |
| MS/MSD Collected?                  |                        | ` ´                       | , –   | •                       |            |
| Dunlianta Campla Calleated?        | N                      | Well Volumes Req.         | 1     | Turbidity Meter         | PN-26858   |
| <b>Duplicate Sample Collected?</b> | IN .                   | Monitor Reading (ppm)     | NΔ    |                         |            |
| Corresponding Duplicate Sample II  | )                      | womtor Reading (ppin)     | 1.1/1 |                         |            |

#### Purge Entries

| Date    | Water<br>Time Level<br>(ft.) | Flow<br>Rate<br>(mL/min) | Color | рН<br>(S.U.) | S.C. (mS/cm) | DO<br>(mg/L) | Turbidity<br>(NTUs) | Temp<br>°<br>C | ORP<br>(mV) | Salinity (%) | Other | Incremental<br>Volume<br>(mL) |
|---------|------------------------------|--------------------------|-------|--------------|--------------|--------------|---------------------|----------------|-------------|--------------|-------|-------------------------------|
| 5/12/08 | 14:00 3.42                   | 150                      | Clear | -            | -            | -            | -                   | -              | -           | -            | -     | 0                             |
| 5/12/08 | 14:31 3.61                   | 150                      | Clear | 6.90         | 55907        | 0.62         | 12.2                | 27.28          | -330.4      | -            | -     | 4650                          |
| 5/12/08 | 14:34 3.61                   | 150                      | Clear | 6.89         | 55933        | 0.56         | 9.2                 | 27.30          | -329.4      | -            | -     | 450                           |
| 5/12/08 | 14:36 3.61                   | 150                      | Clear | 6.88         | 55903        | 0.54         | 5.4                 | 27.32          | -330.8      | -            | -     | 300                           |
| 5/12/08 | 14:39 3.61                   | 150                      | Clear | 688          | 55902        | 0.52         | 4.3                 | 27.32          | -331.1      | -            | -     | 450                           |
| Page 1  | of 2                         |                          |       |              |              |              |                     |                |             |              |       |                               |

# Final Purge / Sample Data

| One Casing Volume      |            | Method                     | Low flow - peristaltic | Dissolved Oxygen (mg/L  | 0.52   |
|------------------------|------------|----------------------------|------------------------|-------------------------|--------|
| O                      | E 0E       | Waterlevel (ft.)           | 3.61                   | <b>Turbidity (NTUs)</b> | 4.3    |
| Total Vo. Purge (L)    | 5.85       | Flowrate (mL/min)          | 150                    | Temp (C)                | 27.32  |
| Start Purge (hrs.)     | 2:00:00 PM | Color                      | Clear                  | ORP (mV)                | -331.1 |
| End Purge (hrs.)       | 2:39:00 PM | pH (S.U.)                  | 688                    | Salinity                | _      |
| Total Purge Time (min. | ) 39       | Conductivity (mS/cm) 55902 |                        | Other                   | -      |



Tetra Tech NUS, Inc. **GROUNDWATER SAMPLE LOG** 

Well Installation and Sampling - KEY WEST NAS

## Analysis Records

| Collected | d Date Time   | Analysis /<br>Method | Description<br>of<br>Analysis | Preservative | e Count | Type             | Requirements Comments | s Chain#         |
|-----------|---------------|----------------------|-------------------------------|--------------|---------|------------------|-----------------------|------------------|
| ×         | 5/12/08 14:45 | SW-846<br>5030B/8260 | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3       | Glass - Clear    | 40ml vials            | ED00000076-      |
| ×         | 5/12/08 14:45 | 5 SW-846 8270C SIM   | I PAHs                        | 4°C          | 2       | Glass -<br>Amber | 1L                    | ED00000076-<br>1 |
| ×         | 5/12/08 14:45 | 5 FL-PRO             | TRPH                          | 4°C/H2SO4    | 2       | Glass -<br>Amber | 1L                    | ED00000076-      |

Page 2 of 2

General Observations and Notes

No Notes

- End of Report -

# APPENDIX B LABORATORY ANALYTICAL REPORTS



#### **INTERNAL CORRESPONDENCE**

TO:

C. BRYAN

DATE:

**JULY 28, 2008** 

FROM:

TREVER SHEETS

COPIES:

**DV FILE** 

SUBJECT:

ORGANIC DATA VALIDATION- VOC / PAH / TPH

CTO 0095, NAS KEY WEST

**SDG F57467** 

SAMPLES:

7/Aqueous/VOC/PAH/TPH

KWSM-FD-01-0508

KWSMMW-04-0508

KWSMMW-05-0508

KWSMMW-06-0508

KWSMMW-09D-0508

KWSMMW-07-0508 KWSMMW-08-0508

#### **OVERVIEW**

The sample set for CTO 0095 NAS Key West, SDG F57467 consists of seven (7) aqueous environmental samples. One field duplicate pair was included in this SDG: KWSM-FD-01-0508/KWSMMW-08-0508.

Samples were analyzed for volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAH), and total petroleum hydrocarbons (TPH) as indicated above.

The samples were collected by TetraTech NUS on May 12, 2008 and analyzed by Accutest Laboratories. All analyses were conducted in accordance with SW-846 Methods 8260B, 8270C, and Florida-PRO analysis and reporting protocols. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
  - Holding Times
    - Initial/Continuing Calibrations
    - Laboratory Method Blank Results
    - Detection Limits
      - Field Duplicate Precision

The symbol (\*) indicates that quality control criteria were met for this parameter. Problems affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

The text of this report is formatted to address only gross non-compliances resulting in the rejection of data and the elimination of false positives.

#### VOC

The initial calibration percent relative standard deviation (%RSD) for methylene chloride and acrolein was greater than the 30% quality control limit but less than 90% on instrument GCMSJ on 5/20/08. No actions were necessary as no positive results were reported for this compound in any of the affected samples and nondetects are not impacted for this noncompliance in a limited data review.

The initial calibration %RSD for bromomethane was greater than the 30% quality control limit but less than 90% on instrument GCMSM on 5/23/08. No actions were necessary as no positive results were reported for this

compound in any of the affected samples and non-detects are not impacted for this noncompliance in a limited data review.

The continuing calibration percent difference (%D) for bromomethane was greater than the 25% quality control limit but less than 90% on instrument GCMSM on 5/23/08 and 5/24/08 at 13:36 and 8:42 respectively. No actions were necessary as no positive results were reported for this compound in samples KWSMMW-04-0508, KWSMMW-05-0508, KWSMMW-07-0508, KWSMMW-08-0508, and KWSMMW-09D-0508 and non-detects are not impacted for this noncompliance in a limited data review.

The continuing calibration %D for chloroethane was greater than the 25% quality control limit but less than 90% on instrument GCMSM on 5/23/08 at 13:36. No actions were necessary as no positive results were reported for this compound in samples KWSMMW-06-0508, KWSMMW-07-0508, KWSMMW-08-0508, and KWSMMW-09D-0508 and non-detects are not impacted for this noncompliance in a limited data review.

The laboratory control sample VJ2472-BS yielded a high percent recovery for acrylonitrile. No actions were necessary as no positive results were reported for this compound in the affected samples and this is a limited data review.

The following compound was detected in the method blank at the following maximum concentration:

|                    | <u>Maximum</u>       | <u>Action</u> |
|--------------------|----------------------|---------------|
| Compound           | <u>Concentration</u> | <u>Level</u>  |
| Methylene Chloride | 1.6 ug/L             | 16 ug/L       |

An action level of 10X the maximum concentration was used to evaluate the sample data for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. No action was taken because methylene chloride was not detected in the associated samples.

Field duplicate imprecision was noted in the duplicate pair KWSM-FD-01-0508/ KWSMMW-08-0508 for ethylbenzene because the relative percent difference (RPD) exceeded 30%. The ethylbenzene results for the field duplicate pair have been qualified as estimated (J).

#### Polynucler Aromatic Hydrocarbons

No qualification of the data was necessary.

#### Total Petroleum Hydrocarbons

No qualification of the data was necessary.

#### **EXECUTIVE SUMMARY**

**Laboratory Performance Issues:** Multiple VOC fraction compounds had initial and continuing calibration percent recovery, percent difference (%D), and percent relative standard deviation (%RSD) noncompliances.

#### Other Factors Affecting Data Quality: None.

The data for these analyses were reviewed with reference to the EPA Functional Guidelines for Organic Data Validation (10/99), and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the DoD QSM for Environmental Laboratories.

Tetra Tech NUS Trever Sheets Data Validator

TetraTech NUS

Joseph A. Samchuck Data Validation Quality Assurance Officer

#### Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

#### **APPENDIX A**

**QUALIFIED ANALYTICAL RESULTS** 

#### **Data Validation Qualifier Codes:**

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can be any number of issues; e.g. poor chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

SDG: F57467 MEDIA: WATER DATA FRACTION: OV

nsample samp\_date KWSM-FD-01-0508

KWSMMW-08-0508

5/12/2008

lab\_id qc\_type units

F57467-1 NM UG/L

Pct\_Solids

DUP\_OF:

samp\_date lab\_id

5/12/2008 F57467-1

qc\_type units

nsample

NM UG/L

Pct\_Solids DUP\_OF:

KWSMMW-08-0508

KWSM-FD-01-0508

nsample samp\_date KWSMMW-04-0508

lab\_id

5/12/2008 F57467-2

qc\_type units

NM UG/L

Pct\_Solids DUP\_OF:

|                           | TOVO IVIIVIVV-C | 00000       | ,           |              |
|---------------------------|-----------------|-------------|-------------|--------------|
| Parameter                 | Result          | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|                           |                 |             |             | Code         |
| 1,1,1-TRICHLOROETHANE     | 0.29            | U           | U           |              |
|                           | 0.37            | U           | U           |              |
| 1,1,2-TRICHLOROETHANE     | 0.3             | U           | U           |              |
| 1,1-DICHLOROETHANE        | 0.25            | U           | U           |              |
| 1,1-DICHLOROETHENE        | 0.23            | U           | U           |              |
| 1,2-DICHLOROBENZENE       | 0.2             | U           | U           |              |
| 1,2-DICHLOROETHANE        | 0.2             | U           | U           |              |
| 1,2-DICHLOROPROPANE       | 0.25            | U           | Ŭ           |              |
| 1,3-DICHLOROBENZENE       | 0.23            | U           | U           | -            |
| 1,4-DICHLOROBENZENE       | 0.22            | U           | C           |              |
| 2-CHLOROETHYL VINYL ETHER | 1.2             | U           | U           |              |
| ACROLEIN                  | . 9             | U           | Ų           |              |
| ACRYLONITRILE             | 2               | U           | U           |              |
| BENZENE                   | 0.2             | U           | U           |              |
| BROMODICHLOROMETHANE      | 0.29            | U           | U           |              |
| BROMOFORM                 | 0.28            | U           | U           |              |
| BROMOMETHANE              | 0.54            | U           | U           |              |
| CARBON TETRACHLORIDE      | 0.29            | U           | U           |              |
| CHLOROBENZENE             | 0.2             | U           | U           |              |
| CHLORODIBROMOMETHANE      | 0.2             | Ū           | U           |              |
| CHLOROETHANE              | 0.46            | U           | U           |              |
| CHLOROFORM                | 1               |             |             |              |
| CHLOROMETHANE             | 0.38            | U           | Ü           |              |
| CIS-1,2-DICHLOROETHENE    | 0.28            | U           | U           |              |
| CIS-1,3-DICHLOROPROPENE   | 0.24            | U           | Ū           |              |
| DICHLORODIFLUOROMETHANE   | 1               | Ü           | U           | _            |
| ETHYLBENZENE              | 2.8             |             | J           | G            |
| METHYL TERT-BUTYL ETHER   | 8.2             | -           |             |              |
| METHYLENE CHLORIDE        | 1               | U           | U           |              |
| TETRACHLOROETHENE         | 0.25            | Ū           | U           |              |
| TOLUENE                   | 0.55            | 1           | J           | Р            |
| TOTAL XYLENES             | 12.7            |             |             |              |
|                           |                 |             |             |              |

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | U           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | U           | U           |              |

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code                            |
|---------------------------|--------|-------------|-------------|-----------------------------------------|
| 1,1,1-TRICHLOROETHANE     | 0.29   | U           | U           |                                         |
| 1,1,2,2-TETRACHLOROETHANE | 0.37   | U           | U           |                                         |
| 1,1,2-TRICHLOROETHANE     | 0.3    | U           | U           | ,                                       |
| 1,1-DICHLOROETHANE        | 0.25   | U           | U           |                                         |
| 1,1-DICHLOROETHENE        | 0.23   | U           | Ü           |                                         |
| 1,2-DICHLOROBENZENE       | 0.2    | U           | U           | -                                       |
| 1,2-DICHLOROETHANE        | 0.2    | U           | U           |                                         |
| 1,2-DICHLOROPROPANE       | 0.25   | U           | U           |                                         |
| 1,3-DICHLOROBENZENE       | 0.23   | Ü           | U           |                                         |
| 1,4-DICHLOROBENZENE       | 0.22   | U           | U           |                                         |
| 2-CHLOROETHYL VINYL ETHER | 1.2    | U           | U           |                                         |
| ACROLEIN                  | 9      | U           | U           |                                         |
| ACRYLONITRILE             | 2      | U           | U           |                                         |
| BENZENE                   | 0.28   | 1           | J           | Р                                       |
| BROMODICHLOROMETHANE      | 0.29   | U           | U           |                                         |
| BROMOFORM                 | 0.28   | U           | U           |                                         |
| BROMOMETHANE              | 0.54   | U           | U           |                                         |
| CARBON TETRACHLORIDE      | 0.29   | U           | U           | *************************************** |
| CHLOROBENZENE             | 0.2    | U           | U           |                                         |
| CHLORODIBROMOMETHANE      | 0.2    | U           | U           |                                         |
| CHLOROETHANE              | 0.46   | U           | U           |                                         |
| CHLOROFORM                | 0.39   | T I         | J           | Р                                       |
| CHLOROMETHANE             | 0.38   | U           | U           |                                         |
| CIS-1,2-DICHLOROETHENE    | 0.28   | U           | U           |                                         |
| CIS-1,3-DICHLOROPROPENE   | 0.24   | U           | U           |                                         |
| DICHLORODIFLUOROMETHANE   | 1      | Ų           | U           |                                         |
| ETHYLBENZENE              | 0.2    | U           | U           |                                         |
| METHYL TERT-BUTYL ETHER   | 6      |             |             |                                         |
| METHYLENE CHLORIDE        | 1      | U           | U           |                                         |
| TETRACHLOROETHENE         | 0.25   | U           | U           |                                         |
| TOLUENE                   | 0.41   | *** T       | J           | Р                                       |
| TOTAL XYLENES             | 0.56   | U           | U           |                                         |

SDG: F57467 MEDIA: WATER DATA FRACTION: OV

nsample samp\_date

KWSMMW-04-0508

5/12/2008

lab\_id qc\_type

units

F57467-2

NM UG/L

Pct\_Solids

DUP\_OF:

| Parameter                 | Result | Lab<br>Quai | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | Ū           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | U           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | U           | U           |              |

| nsample    | KWSMMW-05-0508 |
|------------|----------------|
| samp_date  | 5/12/2008      |
| lab_id     | F57467-3       |
| qc_type    | NM             |
| units      | ÜG/L           |
| Pct Solids |                |

Pct\_Solids DUP\_OF:

| 9            | Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|--------------|---------------------------|--------|-------------|-------------|--------------|
|              | 1,1,1-TRICHLOROETHANE     | 0.29   | U           | U           | <u> </u>     |
|              | 1,1,2,2-TETRACHLOROETHANE | 0.37   | Ü           | U           |              |
|              | 1,1,2-TRICHLOROETHANE     | 0.3    | U           | U           |              |
|              | 1,1-DICHLOROETHANE        | 0.25   | U           | U           |              |
|              | 1,1-DICHLOROETHENE        | 0.23   | U           | U           |              |
|              | 1,2-DICHLOROBENZENE       | 0.2    | U           | U           | -            |
|              | 1,2-DICHLOROETHANE        | 0.2    | U           | U           |              |
|              | 1,2-DICHLOROPROPANE       | 0.25   | U           | U           |              |
|              | 1,3-DICHLOROBENZENE       | 0.23   | U           | U           |              |
|              | 1,4-DICHLOROBENZENE       | 0.22   | U           | Ū           |              |
|              | 2-CHLOROETHYL VINYL ETHER | 1.2    | U           | U           |              |
|              | ACROLEIN                  | 9      | U           | U           |              |
|              | ACRYLONITRILE             | 2      | U           | U           |              |
|              | BENZENE                   | 0.27   | T           | J           | Р            |
|              | BROMODICHLOROMETHANE      | 0.29   | U           | U           |              |
|              | BROMOFORM                 | 0.28   | U           | U           |              |
|              | BROMOMETHANE              | 0.54   | U           | U           |              |
|              | CARBON TETRACHLORIDE      | 0.29   | U           | U           |              |
| ĺ            | CHLOROBENZENE             | 0.2    | U           | U           |              |
|              | CHLORODIBROMOMETHANE      | 0.2    | U           | U           |              |
| Į            | CHLOROETHANE              | 0.46   | U           | U           | -            |
| L            | CHLOROFORM                | 0.25   | 1           | J           | . Р          |
|              | CHLOROMETHANE             | 0.38   | U           | U           |              |
| Ì            | CIS-1,2-DICHLOROETHENE    | 0.28   | U           | U           |              |
| -            | CIS-1,3-DICHLOROPROPENE   | 0.24   | U           | U           |              |
|              | DICHLORODIFLUOROMETHANE   | 1      | U           | U           |              |
|              | ETHYLBENZENE              | 0.42   | 1           | J           | Р            |
| - <u>1</u> - | METHYL TERT-BUTYL ETHER   | 6.6    |             |             |              |
| 1            | METHYLENE CHLORIDE        | 1      | U           | U           |              |
|              | ETRACHLOROETHENE          | 0.25   | U           | U           |              |
| L            | OLUENE                    | 0.34   | ī           | J           | Р            |
| 1            | OTAL XYLENES              | 0.66   | T           | J           | Р            |

| nsample    | KWSMMW-05-0508 |
|------------|----------------|
| samp_date  | 5/12/2008      |
| lab_id     | F57467-3       |
| qc_type    | NM             |
| units      | UG/L           |
| Pct_Solids |                |

DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |  |
|---------------------------|--------|-------------|-------------|--------------|--|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | Ü           |              |  |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | Ų           | U           |              |  |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |  |
| TRICHLOROFLUOROMETHANE    | 0.43   | U .         | U           |              |  |
| VINYL CHLORIDE            | 0.34   | Ü           | U           |              |  |

#### PROJ NO: 00979

Parameter

1,1,1-TRICHLOROETHANE

#### SDG: F57467 MEDIA: WATER DATA FRACTION: OV

nsampie samp\_date KWSMMW-06-0508

Result

0.29

Lab

Qual

U

U

5/12/2008

lab\_id qc\_type F57467-4

NM

Pct\_Solids DUP\_OF:

units

UG/L

|      |              | qc_ty |
|------|--------------|-------|
|      |              | units |
|      |              | Pct_S |
|      |              | DUP_  |
| Val  | Qual         |       |
| Qual | Qual<br>Code |       |

nsample KWSMMW-06-0508 samp\_date 5/12/2008 lab\_id F57467-4 /pe NM UG/L

Solids OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | U           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | Ü           | U           |              |

nsample KWSMMW-07-0508 samp\_date 5/12/2008 lab\_id F57467-5 qc\_type NM units UG/L Pct\_Solids

DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| 1,1,1-TRICHLOROETHANE     | 0.29   | U           | U           |              |
| 1,1,2,2-TETRACHLOROETHANE | 0.37   | U           | U           |              |
| 1,1,2-TRICHLOROETHANE     | 0.3    | U           | U           |              |
| 1,1-DICHLOROETHANE        | 0.25   | U           | U           | r            |
| 1,1-DICHLOROETHENE        | 0.23   | Ų           | U           | ,            |
| 1,2-DICHLOROBENZENE       | 0.2    | U           | U           |              |
| 1,2-DICHLOROETHANE        | 0.2    | U           | U           |              |
| 1,2-DICHLOROPROPANE       | 0.25   | U           | U           | -            |
| 1,3-DICHLOROBENZENE       | 0.23   | U           | U           |              |
| 1,4-DICHLOROBENZENE       | 0.22   | U           | U           | -            |
| 2-CHLOROETHYL VINYL ETHER | 1.2    | Ü           | U           |              |
| ACROLEIN                  | . 9    | Ū           | U           |              |
| ACRYLONITRILE             | 2      | Ü           | U           |              |
| BENZENE                   | 0.2    | U           | U           |              |
| BROMODICHLOROMETHANE      | 0.29   | U           | U           |              |
| BROMOFORM                 | 0.28   | U           | U           |              |
| BROMOMETHANE              | 0.54   | U           | Ü           |              |
| CARBON TETRACHLORIDE      | 0.29   | U           | U           |              |
| CHLOROBENZENE             | 0.2    | U           | Ü           |              |
| CHLORODIBROMOMETHANE      | 0.2    | U           | Ú           |              |
| CHLOROETHANE              | 0.46   | Ų           | U           |              |
| CHLOROFORM                | 0.21   | U           | U           |              |
| CHLOROMETHANE             | 2.1    |             |             |              |
| CIS-1,2-DICHLOROETHENE    | 0.28   | U           | U           |              |
| CIS-1,3-DICHLOROPROPENE   | 0.24   | U           | U           |              |
| DICHLORODIFLUOROMETHANE   | 1      | U           | U           |              |
| ETHYLBENZENE              | 0.2    | U           | Ü           |              |
| METHYL TERT-BUTYL ETHER   | 20.9   |             | -           |              |
| METHYLENE CHLORIDE        | 1      | U           | U           |              |
| TETRACHLOROETHENE         | 0.25   | U           | U           |              |
| TOLUENE                   | 0.79   | 1           | J           | Р            |
| TOTAL XYLENES             | 0.56   | U           | U           |              |

| 1,1,1 THISTIESTISETIVALE  | 0.29 | . 0 | U |      |
|---------------------------|------|-----|---|------|
| 1,1,2,2-TETRACHLOROETHANE | 0.37 | U   | U |      |
| 1,1,2-TRICHLOROETHANE     | 0.3  | U   | U |      |
| 1,1-DICHLOROETHANE        | 0.25 | Û   | U |      |
| 1,1-DICHLOROETHENE        | 0.23 | U   | Ū |      |
| 1,2-DICHLOROBENZENE       | 0.2  | U   | U |      |
| 1,2-DICHLOROETHANE        | 0.2  | U   | U |      |
| 1,2-DICHLOROPROPANE       | 0.25 | Ü   | U |      |
| 1,3-DICHLOROBENZENE       | 0.23 | U   | U |      |
| 1,4-DICHLOROBENZENE       | 0.22 | U   | U |      |
| 2-CHLOROETHYL VINYL ETHER | 1.2  | U   | U |      |
| ACROLEIN                  | 9    | Ų   | U | **** |
| ACRYLONITRILE             | 2    | U   | U |      |
| BENZENE                   | 0.2  | U   | U |      |
| BROMODICHLOROMETHANE      | 0.29 | U   | U |      |
| BROMOFORM                 | 0.28 | U   | Ü |      |
| BROMOMETHANE              | 0.54 | U   | U | -    |
| CARBON TETRACHLORIDE      | 0.29 | U   | Ü |      |
| CHLOROBENZENE             | 0.2  | U   | U |      |
| CHLORODIBROMOMETHANE      | 0.2  | U   | U |      |
| CHLOROETHANE              | 0.46 | U   | U |      |
| CHLOROFORM                | 0.21 | U   | Ü |      |
| CHLOROMETHANE             | 0.38 | U   | U |      |
| CIS-1,2-DICHLOROETHENE    | 0.28 | U   | U |      |
| CIS-1,3-DICHLOROPROPENE   | 0.24 | U   | Ū |      |
| DICHLORODIFLUOROMETHANE   | 1    | U   | U |      |
| ETHYLBENZENE              | 0.2  | U   | U | 701  |
| METHYL TERT-BUTYL ETHER   | 12.8 | *** |   |      |
| METHYLENE CHLORIDE        | 1    | U   | U |      |
| TETRACHLOROETHENE         | 0.25 | Ū   | U |      |
| TOLUENE                   | 0.3  |     | J | Р    |
| TOTAL XYLENES             | 0.56 | U   | Ū |      |

#### SDG: F57467 MEDIA: WATER DATA FRACTION: OV

nsample

KWSMMW-07-0508

samp\_date

5/12/2008

lab\_id qc\_type

F57467-5

units

NM UG/L

Pct\_Solids DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | U           | -            |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | Ü           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           | ***          |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | U           | U           | -            |

 nsample
 KWSMMW-08-0508

 samp\_date
 5/12/2008

 lab\_id
 F57467-6

 qc\_type
 NM

 units
 UG/L

Pct\_Solids DUP\_OF:

|         | Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------|---------------------------|--------|-------------|-------------|--------------|
| ]       | 1,1,1-TRICHLOROETHANE     | 0.29   | U           | U           |              |
|         | 1,1,2,2-TETRACHLOROETHANE | 0.37   | U           | U           |              |
|         | 1,1,2-TRICHLOROETHANE     | 0.3    | U           | U           |              |
|         | 1,1-DICHLOROETHANE        | 0.25   | Ü           | U           | -            |
|         | 1,1-DICHLOROETHENE        | 0.23   | U           | U           | -            |
|         | 1,2-DICHLOROBENZENE       | 0.2    | U           | U           |              |
|         | 1,2-DICHLOROETHANE        | 0.2    | U           | U           |              |
|         | 1,2-DICHLOROPROPANE       | 0.25   | U           | U           |              |
|         | 1,3-DICHLOROBENZENE       | 0.23   | U           | U           | <del></del>  |
|         | 1,4-DICHLOROBENZENE       | 0.22   | U           | Ū           |              |
|         | 2-CHLOROETHYL VINYL ETHER | 1.2    | Ü           | U           |              |
|         | ACROLEIN                  | 9      | U           | U           |              |
| Į       | ACRYLONITRILE             | 2.2    | 1           | J           | P            |
|         | BENZENE                   | 0.2    | U           | U           |              |
| . Į     | BROMODICHLOROMETHANE      | 0.29   | U           | U           |              |
|         | BROMOFORM                 | 0.28   | U           | . U         |              |
|         | BROMOMETHANE              | 0.54   | U           | U           |              |
| (       | CARBON TETRACHLORIDE      | 0.29   | Ü           | U           |              |
| (       | CHLOROBENZENE             | 0.2    | U           | U           |              |
|         | CHLORODIBROMOMETHANE      | 0.2    | U           | U           |              |
| (       | CHLOROETHANE              | 0.46   | U           | Ú           |              |
| (       | CHLOROFORM                | 1.2    |             |             |              |
|         | CHLOROMETHANE             | 0.38   | U           | U           |              |
|         | CIS-1,2-DICHLOROETHENE    | 0.28   | U           | U           |              |
|         | CIS-1,3-DICHLOROPROPENE   | 0.24   | U           | U           |              |
| 0       | DICHLORODIFLUOROMETHANE   | 1      | U           | U           |              |
| $\perp$ | THYLBENZENE               | 4.1    |             | J           | G            |
| -       | METHYL TERT-BUTYL ETHER   | 8.5    |             |             |              |
| Λ       | METHYLENE CHLORIDE        | 1      | Ü           | U           |              |
| T       | ETRACHLOROETHENE          | 0.25   | U           | U           |              |
| -       | OLUENE                    | 0.6    |             | J           | Р            |
| I       | OTAL XYLENES              | 16.6   | -           |             |              |

 nsample
 KWSMMW-08-0508

 samp\_date
 5/12/2008

 lab\_id
 F57467-6

 qc\_type
 NM

 units
 UG/L

 Pct\_Solids

Pct\_Solids DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | U           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | U           | U           |              |

SDG: F57467 MEDIA: WATER DATA FRACTION: OV

nsample

KWSMMW-09D-0508

samp\_date 5/12/2008 lab\_id F57467-7

qc\_type units F57467-7 NM UG/L

Pct\_Solids DUP\_OF:

nsample samp\_date

KWSMMW-09D-0508

\_date 5/12/2008

lab\_id qc\_type units

F57467-7 NM

UG/L

Pct\_Solids DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | U           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | U           | U           |              |

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| 1,1,1-TRICHLOROETHANE     | 0.29   | U           | U           |              |
| 1,1,2,2-TETRACHLOROETHANE | 0.37   | U           | U           | <u> </u>     |
| 1,1,2-TRICHLOROETHANE     | 0.3    | U           | U           | <u> </u>     |
| 1,1-DICHLOROETHANE        | 0.25   | U           | U           |              |
| 1,1-DICHLOROETHENE        | 0.23   | U           | U           |              |
| 1,2-DICHLOROBENZENE       | 0.2    | U           | U           |              |
| 1,2-DICHLOROETHANE        | 0.2    | U           | U           |              |
| 1,2-DICHLOROPROPANE       | 0.25   | U           | U           |              |
| 1,3-DICHLOROBENZENE       | 0.23   | U           | U           |              |
| 1,4-DICHLOROBENZENE       | 0.22   | Ū           | U           |              |
| 2-CHLOROETHYL VINYL ETHER | 1.2    | U           | U           |              |
| ACROLEIN                  | 9      | U           | U           | -            |
| ACRYLONITRILE             | 2      | U           | Ü           |              |
| BENZENE                   | 0.49   |             | J           | Р            |
| BROMODICHLOROMETHANE      | 0.29   | U           | Ū           |              |
| BROMOFORM                 | 0.28   | U           | U           |              |
| BROMOMETHANE              | 0.54   | Ü           | U           |              |
| CARBON TETRACHLORIDE      | 0.29   | U           | Ū           |              |
| CHLOROBENZENE             | 0.2    | U           | U           |              |
| CHLORODIBROMOMETHANE      | 0.2    | U           | U           |              |
| CHLOROETHANE              | 0.46   | U           | Ü           |              |
| CHLOROFORM                | 0.47   |             | J           | P            |
| CHLOROMETHANE             | 0.38   | U           | U           |              |
| CIS-1,2-DICHLOROETHENE    | 0.28   | U           | U           | -            |
| CIS-1,3-DICHLOROPROPENE   | 0.24   | U           | U           |              |
| DICHLORODIFLUOROMETHANE   | 1      | U           | U           |              |
| ETHYLBENZENE              | 4.4    |             | -+          |              |
| METHYL TERT-BUTYL ETHER   | 3.1    |             |             |              |
| METHYLENE CHLORIDE        | 1      | U           | U           |              |
| TETRACHLOROETHENE         | 0.25   | U           | U           |              |
| TOLUENE                   | 2.9    |             |             | $\neg$       |
| TOTAL XYLENES             | 26     |             |             | _            |

SDG: F57467 MEDIA: WATER DATA FRACTION: PAH

nsample samp\_date KWSM-FD-01-0508

5/12/2008 F57467-1

qc\_type units

lab\_id

NM UG/L

Pct\_Solids

nsample samp\_date

> lab\_id qc\_type units Pct\_Solids

DUP\_OF:

KWSMMW-04-0508

5/12/2008 F57467-2 NM

UG/L

nsample

samp\_date lab\_id

qc\_type units

5/12/2008 F57467-3

KWSMMW-05-0508

NM UG/L

Pct\_Solids DUP\_OF:

DUR OF:

KINISMMMM-08-0508

| DUP_OF:                | KWSMMW-0 | WSMMW-08-0508 |             |              |
|------------------------|----------|---------------|-------------|--------------|
| Parameter              | Result   | Lab<br>Qual   | Val<br>Qual | Qual<br>Code |
| 1-METHYLNAPHTHALENE    | 0.57     | I             | J           | P.           |
| 2-METHYLNAPHTHALENE    | 0.63     | l             | J           | Р            |
| ACENAPHTHENE           | 0.96     | U             | U           |              |
| ACENAPHTHYLENE         | 0.48     | U             | U           |              |
| ANTHRACENE             | 0.48     | U             | U           |              |
| BENZO(A)ANTHRACENE     | 0.048    | U             | U           |              |
| BENZO(A)PYRENE         | 0.096    | U             | U           |              |
| BENZO(B)FLUORANTHENE   | 0.048    | U             | Ü           |              |
| BENZO(G,H,I)PERYLENE   | 0.096    | U             | U           |              |
| BENZO(K)FLUORANTHENE   | 0.096    | U             | U           |              |
| CHRYSENE               | 0.096    | U             | U           |              |
| DIBENZO(A,H)ANTHRACENE | 0.048    | U             | U           |              |
| FLUORANTHENE           | 0.24     | Ų             | U           |              |
| FLUORENE               | 0.24     | U             | U           |              |
| INDENO(1,2,3-CD)PYRENE | 0.048    | Ü             | U           | ·            |
| NAPHTHALENE            | 1.1      |               |             |              |
| PHENANTHRENE           | 0.48     | U             | U           |              |
| PYRENE                 | 0.24     | U             | U           |              |

| <b>D</b>               | D      | Lab  | Val  | Qual |
|------------------------|--------|------|------|------|
| Parameter              | Result | Qual | Qual | Code |
| 1-METHYLNAPHTHALENE    | 0.24   | U    | U    |      |
| 2-METHYLNAPHTHALENE    | 0.24   | U    | U    |      |
| ACENAPHTHENE           | 0.48   | U    | U    |      |
| ACENAPHTHYLENE         | 0.48   | U    | U    |      |
| ANTHRACENE             | 0.48   | U    | U    |      |
| BENZO(A)ANTHRACENE     | 0.048  | U    | Ū    |      |
| BENZO(A)PYRENE         | 0.096  | U    | U    |      |
| BENZO(B)FLUORANTHENE   | 0.048  | U    | U    |      |
| BENZO(G,H,I)PERYLENE   | 0.096  | U    | U    |      |
| BENZO(K)FLUORANTHENE   | 0.096  | U    | U    |      |
| CHRYSENE               | 0.096  | U    | U    |      |
| DIBENZO(A,H)ANTHRACENE | 0.048  | U    | U    |      |
| FLUORANTHENE           | 0.24   | U    | U    |      |
| FLUORENE               | 0.24   | U    | U    |      |
| INDENO(1,2,3-CD)PYRENE | 0.048  | U    | U    |      |
| NAPHTHALENE            | 0.24   | U    | U    |      |
| PHENANTHRENE           | 0.48   | U    | U    |      |
| PYRENE                 | 0.24   | U    | U    |      |

| Parameter              | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|------------------------|--------|-------------|-------------|--------------|
| 1-METHYLNAPHTHALENE    | 0.24   | U           | U           |              |
| 2-METHYLNAPHTHALENE    | 0.24   | U           | Ü           |              |
| ACENAPHTHENE           | 0.48   | Ų           | U           |              |
| ACENAPHTHYLENE         | 0.48   | U           | U           |              |
| ANTHRACENE             | 0.48   | U           | U           |              |
| BENZO(A)ANTHRACENE     | 0.048  | U           | U           |              |
| BENZO(A)PYRENE         | 0.096  | U           | U           |              |
| BENZO(B)FLUORANTHENE   | 0.048  | U           | U           |              |
| BENZO(G,H,I)PERYLENE   | 0.096  | U           | U           |              |
| BENZO(K)FLUORANTHENE   | 0.096  | U           | U           |              |
| CHRYSENE               | 0.096  | U           | Ų           |              |
| DIBENZO(A,H)ANTHRACENE | 0.048  | U           | Ū           |              |
| FLUORANTHENE           | 0.24   | U           | Ü           |              |
| FLUORENE               | 0.24   | U           | U           |              |
| INDENO(1,2,3-CD)PYRENE | 0.048  | U           | U           |              |
| NAPHTHALENE            | 0.24   | U           | Ü           |              |
| PHENANTHRENE           | 0.48   | U           | U           |              |
| PYRENE                 | 0.24   | U           | U           |              |
|                        |        |             |             |              |

SDG: F57467 MEDIA: WATER DATA FRACTION: PAH

nsample samp\_date KWSMMW-06-0508

5/12/2008 F57467-4

lab\_id qc\_type NM units UG/L

Pct\_Solids DUP\_OF:

nsample samp\_date lab\_id

qc\_type units Pct\_Solids KWSMMW-07-0508

5/12/2008 F57467-5 NM

UG/L

DUP\_OF:

nsample

samp\_date lab\_id qc\_type

units Pct\_Solids KWSMMW-08-0508

5/12/2008 F57467-6

NM UG/L

DUP\_OF:

|                        |        | Lab  | Vai  | Qual |
|------------------------|--------|------|------|------|
| Parameter              | Result | Qual | Qual | Code |
| 1-METHYLNAPHTHALENE    | 0.24   | Ü    | U    |      |
| 2-METHYLNAPHTHALENE    | 0.24   | U    | U    |      |
| ACENAPHTHENE           | 0.49   | U    | U    |      |
| ACENAPHTHYLENE         | 0.49   | U    | · U  |      |
| ANTHRACENE             | 0.49   | U    | Ü    | -    |
| BENZO(A)ANTHRACENE     | 0.049  | U    | U    |      |
| BENZO(A)PYRENE         | 0.097  | U    | U    |      |
| BENZO(B)FLUORANTHENE   | 0.049  | U    | U    |      |
| BENZO(G,H,I)PERYLENE   | 0.097  | U    | U    |      |
| BENZO(K)FLUORANTHENE   | 0.097  | U    | Ü    |      |
| CHRYSENE               | 0.097  | U    | Ū    | ~    |
| DIBENZO(A,H)ANTHRACENE | 0.049  | U    | U    |      |
| FLUORANTHENE           | 0.34   |      | j    | Р    |
| FLUORENE               | 0.26   | ı    | J    | Р    |
| INDENO(1,2,3-CD)PYRENE | 0.049  | U    | U    |      |
| NAPHTHALENE            | 0.24   | U    | U    |      |
| PHENANTHRENE           | 0.82   | ī    | J    | Р    |
| PYRENE                 | 0.24   | U    | U    |      |

|   | Parameter              | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---|------------------------|--------|-------------|-------------|--------------|
|   | 1-METHYLNAPHTHALENE    | 0.24   | Ü           | U           |              |
|   | 2-METHYLNAPHTHALENE    | 0.24   | Ū           | U           | -            |
|   | ACENAPHTHENE           | 0.48   | . U         | Ü           |              |
| Į | ACENAPHTHYLENE         | 0.48   | U           | U           |              |
|   | ANTHRACENE             | 0.48   | U           | U           |              |
|   | BENZO(A)ANTHRACENE     | 0.048  | Ű           | Ü           |              |
|   | BENZO(A)PYRENE         | 0.096  | U           | U           |              |
|   | BENZO(B)FLUORANTHENE   | 0.048  | U           | U           |              |
| ļ | BENZO(G,H,I)PERYLENE   | 0.096  | U           | U           |              |
|   | BENZO(K)FLUORANTHENE   | 0.096  | U           | U           |              |
|   | CHRYSENE               | 0.096  | U           | U           |              |
| ĺ | DIBENZO(A,H)ANTHRACENE | 0.048  | U           | U           |              |
|   | FLUORANTHENE           | 0.24   | U           | U           |              |
| Į | FLUORENE               | 0.24   | U           | U           | ************ |
|   | INDENO(1,2,3-CD)PYRENE | 0.048  | Ü           | U           |              |
|   | NAPHTHALENE            | 0.24   | U           | U           | -            |
|   | PHENANTHRENE           | 0.48   | Ü           | U           |              |
|   | PYRENE                 | 0.24   | U           | U           |              |
|   |                        |        |             |             |              |

| Parameter              | Result | Lab<br>Qual | Vai<br>Qual | Qual<br>Code |
|------------------------|--------|-------------|-------------|--------------|
| 1-METHYLNAPHTHALENE    | 0.58   | -           | J           | Р            |
| 2-METHYLNAPHTHALENE    | 0.63   | 1           | J           | Р            |
| ACENAPHTHENE           | 0.48   | U           | U           |              |
| ACENAPHTHYLENE         | 0.48   | Ü           | Ū           |              |
| ANTHRACENE             | 0.48   | U           | U           |              |
| BENZO(A)ANTHRACENE     | 0.048  | U           | U           |              |
| BENZO(A)PYRENE         | 0.096  | U           | U           |              |
| BENZO(B)FLUORANTHENE   | 0.048  | Ű           | U           |              |
| BENZO(G,H,I)PERYLENE   | 0.096  | U           | U           |              |
| BENZO(K)FLUORANTHENE   | 0.096  | U           | U           |              |
| CHRYSENE               | 0.096  | U           | U           |              |
| DIBENZO(A,H)ANTHRACENE | 0.048  | U           | U           |              |
| FLUORANTHENE           | 0.24   | U           | U           |              |
| FLUORENE               | 0.24   | U           | U           |              |
| INDENO(1,2,3-CD)PYRENE | 0.048  | U           | U           |              |
| NAPHTHALENE            | 1.2    |             |             |              |
| PHENANTHRENE           | 0.48   | U           | U           |              |
| PYRENE                 | 0.24   | U           | U           |              |

SDG: F57467 MEDIA: WATER DATA FRACTION: PAH

nsample

KWSMMW-09D-0508

samp\_date

5/12/2008

lab\_id

F57467-7

qc\_type

NM

units

UG/L

Pct\_Solids DUP\_OF:

| Parameter              | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|------------------------|--------|-------------|-------------|--------------|
| 1-METHYLNAPHTHALENE    | 0.41   | -           | J           | Р            |
| 2-METHYLNAPHTHALENE    | 0.68   | - 1         | J           | Р            |
| ACENAPHTHENE           | 0.48   | U           | U           |              |
| ACENAPHTHYLENE         | 0.48   | Ü           | U           |              |
| ANTHRACENE             | 0.48   | U           | U           |              |
| BENZO(A)ANTHRACENE     | 0.048  | U           | U           |              |
| BENZO(A)PYRENE         | 0.096  | U           | U           |              |
| BENZO(B)FLUORANTHENE   | 0.048  | U           | U           |              |
| BENZO(G,H,I)PERYLENE   | 0.096  | Ū           | U           |              |
| BENZO(K)FLUORANTHENE   | 0.096  | Ü           | U           |              |
| CHRYSENE               | 0.096  | U           | U           |              |
| DIBENZO(A,H)ANTHRACENE | 0.048  | U           | U           |              |
| FLUORANTHENE           | 0.24   | U           | U           |              |
| FLUORENE               | 0.24   | Ü           | U           |              |
| INDENO(1,2,3-CD)PYRENE | 0.048  | U           | Ü           |              |
| NAPHTHALENE            | 1.1    |             |             |              |
| PHENANTHRENE           | 0.48   | U           | Ü           |              |
| PYRENE                 | 0.24   | U           | U           |              |

00979

SDG: F57467 MEDIA: WATER DATA FRACTION: PET

nsample samp\_date

lab\_id

units

qc\_type

KWSM-FD-01-0508

5/12/2008 F57467-1

samp\_date lab\_id

KWSMMW-04-0508 5/12/2008

F57467-2

NM

MG/L

samp\_date lab\_id

qc\_type

KWSMMW-05-0508 5/12/2008 F57467-3

NM MG/L

Pct\_Solids

DUP\_OF:

KWSMMW-08-0508

Pct\_Solids DUP\_OF:

nsample

qc\_type

units

Pct\_Solids

units

nsample

DUP\_OF:

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.289  |             |             |              |

NM

MG/L

| Parameter     | Result | Lab | Val<br>Qual | Qual |
|---------------|--------|-----|-------------|------|
| TPH (C08-C40) | 0.16   | U   | U           |      |

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.223  | !           | J           | Р            |

SDG: F57467 MEDIA: WATER DATA FRACTION: PET

nsample samp\_date KWSMMW-06-0508

5/12/2008

F57467-4

lab\_id qc\_type NM units MG/L

Pct\_Solids DUP\_OF:

nsample

qc\_type

Pct\_Solids

DUP\_OF:

units

samp\_date lab\_id

KWSMMW-07-0508 5/12/2008

F57467-5 NM MG/L

nsample

qc\_type

samp\_date lab\_id

KWSMMW-08-0508

5/12/2008 F57467-6

NM MG/L

units Pct\_Solids DUP\_OF:

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.17   | Ü           | U           |              |

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.429  |             |             |              |

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.325  |             |             |              |

SDG: F57467 MEDIA: WATER DATA FRACTION: PET

nsample

KWSMMW-09D-0508

samp\_date

5/12/2008

lab\_id

F57467-7

qc\_type

NM

units MG/L

Pct\_Solids DUP\_OF:

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.201  | 1           | J           | Р            |

#### APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

## Report of Analysis

Ву

KW

Page 1 of 2

Client Sample ID: KWSM-FD-01-0508

Lab Sample ID: Matrix:

F57467-1

AQ - Ground Water

Date Sampled: Date Received:

05/12/08 05/13/08

Prep Batch

Method:

SW846 8260B

Project:

NAS Key West, Key West, FL

DF

1

Analyzed

05/23/08

Prep Date

n/a

Percent Solids: n/a

n/a

Analytical Batch VJ2472

Run #1 Run #2

Purge Volume

File ID

J038563.D

Run #1  $5.0 \, ml$ 

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units | Q |
|------------|----------------------------|--------|-----|------|-------|---|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |   |
| 107-13-1   | Acrylonitrile              | 2.0 U  | 10  | 2.0  | ug/l  |   |
| 71-43-2    | Benzene                    | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-27-4    | Bromodichloromethane       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-00-3    | Chloroethane               | 0.46 U | 2.0 | 0.46 | ug/l  |   |
| 67-66-3    | Chloroform                 | 1.0    | 1.0 | 0.21 | ug/l  |   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |   |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |   |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 100-41-4   | Ethylbenzene               | 2.8    | 1.0 | 0.20 | ug/l  |   |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |   |
| 74-87-3    | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |   |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 8.2    | 1.0 | 0.25 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |   |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank



Client Sample ID: KWSM-FD-01-0508

Lab Sample ID: Matrix:

F57467-1

AQ - Ground Water

Date Sampled:

05/12/08 Date Received: 05/13/08

Method:

SW846 8260B

Percent Solids: n/a

Project:

NAS Key West, Key West, FL

#### VOA PPL List + MTBE

| CAS No.                                                | Compound                                                                                   | Result                                     | RL                              | MDL                                  | Units                                | Q |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4<br>75-01-4<br>1330-20-7 | Toluene<br>Trichloroethylene<br>Trichlorofluoromethane<br>Vinyl chloride<br>Xylene (total) | 0.55<br>0.38 U<br>0.43 U<br>0.34 U<br>12.7 | 1.0<br>1.0<br>2.0<br>1.0<br>3.0 | 0.27<br>0.38<br>0.43<br>0.34<br>0.56 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | I |
| CAS No.                                                | Surrogate Recoveries                                                                       | Run# 1                                     | Run# 2                          | Limits                               |                                      |   |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4       | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene        | 96%<br>97%<br>104%<br>105%                 |                                 | 76-1<br>86-1                         | 16%<br>27%<br>12%<br>20%             |   |



MDL - Method Detection Limit

RL = Reporting Limit = PQL

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank





L = Indicates value exceeds calibration range

Client Sample ID: KWSMMW-04-0508

Lab Sample ID: Matrix:

F57467-2

AQ - Ground Water

Date Sampled: Date Received:

05/12/08 05/13/08

Method:

SW846 8260B

Percent Solids: n/a

Project:

NAS Key West, Key West, FL

File ID DF **Analytical Batch** Analyzed By Prep Date Prep Batch Run #1 M0027533.D 05/24/08 MMVM1134 1 n/a n/a

Run #2

 $5.0 \, ml$ 

Purge Volume

Run #1

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units | Q |
|------------|----------------------------|--------|-----|------|-------|---|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |   |
| 107-13-1   | Acrylonitrile              | 2.0 U  | 10  | 2.0  | ug/l  |   |
| 71-43-2    | Benzene                    | 0.28   | 1.0 | 0.20 | ug/l  | I |
| 75-27-4    | Bromodichloromethane       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-00-3    | Chloroethane               | 0.46 U | 2.0 | 0.46 | ug/l  |   |
| 67-66-3    | Chloroform                 | 0.39   | 1.0 | 0.21 | ug/l  | I |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |   |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |   |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 100-41-4   | Ethylbenzene               | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |   |
| 74-87-3    | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |   |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 6.0    | 1.0 | 0.25 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |   |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank







## Report of Analysis

Client Sample ID: KWSMMW-04-0508

Lab Sample ID:

Matrix:

Method:

17060-07-0

2037-26-5

460-00-4

SW846 8260B

F57467-2

1,2-Dichloroethane-D4

4-Bromofluorobenzene

Toluene-D8

AQ - Ground Water

Date Sampled: Date Received:

76-127%

86-112%

84-120%

05/12/08 05/13/08

Percent Solids:

n/a

Project: NAS Key West, Key West, FL

VOA PPL List + MTBE

| CAS No.   | Compound               | Result | RL     | MDL  | Units | Q |
|-----------|------------------------|--------|--------|------|-------|---|
| 108-88-3  | Toluene                | 0.41   | 1.0    | 0.27 | ug/l  | I |
| 79-01-6   | Trichloroethylene      | 0.38 U | 1.0    | 0.38 | ug/l  |   |
| 75-69-4   | Trichlorofluoromethane | 0.43 U | 2.0    | 0.43 | ug/l  |   |
| 75-01-4   | Vinyl chloride         | 0.34 U | 1.0    | 0.34 | ug/l  |   |
| 1330-20-7 | Xylene (total)         | 0.56 U | 3.0    | 0.56 | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1 | Run# 2 | Lim  | its   |   |
| 1868-53-7 | Dibromofluoromethane   | 102%   |        | 87-1 | 16%   |   |

103%

107%

108%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank





Client Sample ID: KWSMMW-05-0508

Lab Sample ID: Matrix:

F57467-3

AQ - Ground Water SW846 8260B

DF

1

Date Sampled: 05/12/08 Date Received:

Analyzed

05/24/08

05/13/08

Method: Project:

NAS Key West, Key West, FL

Percent Solids: n/a

**Analytical Batch** By Prep Date Prep Batch MM VM1134 n/a n/a

Run #1 Run #2

Purge Volume

File ID

M0027534.D

Run #1 5.0 ml

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units | Q  |
|------------|----------------------------|--------|-----|------|-------|----|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |    |
| 107-13-1   | Acrylonitrile              | 2.0 U  | 10  | 2.0  | ug/l  |    |
| 71-43-2    | Benzene                    | 0.27   | 1.0 | 0.20 | ug/l  | Ι. |
| 75-27-4    | Bromodichloromethane       | 0.29 U | 1.0 | 0.29 | ug/l  |    |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |    |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |    |
| 75-00-3    | Chloroethane '             | 0.46 U | 2.0 | 0.46 | ug/l  |    |
| 67-66-3    | Chloroform                 | 0.25   | 1.0 | 0.21 | ug/l  | I  |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |    |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |    |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |    |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |    |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |    |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |    |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |    |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |    |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |    |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |    |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |    |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |    |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |    |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |    |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |    |
| 100-41-4   | Ethylbenzene               | 0.42   | 1.0 | 0.20 | ug/l  | I  |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |    |
| 74-87-3    | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |    |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |    |
| 1634-04-4  | Methyl Tert Butyl Ether    | 6,6    | 1.0 | 0.25 | ug/l  |    |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |    |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |    |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |    |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank



Client Sample ID: KWSMMW-05-0508

Lab Sample ID:

F57467-3

AQ - Ground Water

Date Sampled: Date Received:

05/12/08 05/13/08

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

NAS Key West, Key West, FL

VOA PPL List + MTBE

| CAS No.    | Compound               | Result | RL     | MDL  | Units | Q |
|------------|------------------------|--------|--------|------|-------|---|
| 108-88-3   | Toluene                | 0.34   | 1.0    | 0.27 | ug/l  | I |
| 79-01-6    | Trichloroethylene      | 0.38 U | 1.0    | 0.38 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane | 0.43 U | 2.0    | 0.43 | ug/l  |   |
| 75-01-4    | Vinyl chloride         | 0.34 U | 1.0    | 0.34 | ug/l  |   |
| 1330-20-7  | Xylene (total)         | 0.66   | 3.0    | 0.56 | ug/l  | I |
| CAS No.    | Surrogate Recoveries   | Run# 1 | Run# 2 | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane   | 102%   |        | 87-1 | 16%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4  | 104%   |        | 76-1 | 27%   |   |
| 2037-26-5  | Toluene-D8             | 107%   | Š.     | 86-1 | 12%   |   |
| 460-00-4   | 4-Bromofluorobenzene   | 106%   | V:     | 84-1 | 20%   |   |
|            |                        |        |        |      |       |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





By

MM

Client Sample ID: KWSMMW-06-0508

Lab Sample ID: Matrix:

F57467-4

AQ - Ground Water

DF

1

Date Sampled: Date Received:

05/12/08 05/13/08

Method:

SW846 8260B

Percent Solids:

n/a

Project:

NAS Key West, Key West, FL

Analyzed

05/23/08

Prep Date Prep Batch Analytical Batch n/a n/a VM1133

Run #1 Run #2

Purge Volume

M0027517.D

File ID

Run #1  $5.0 \, ml$ 

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units | Q |
|------------|----------------------------|--------|-----|------|-------|---|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |   |
| 107-13-1   | Acrylonitrile              | 2.0 U  | 10  | 2.0  | ug/l  |   |
| 71-43-2    | Benzene                    | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-27-4    | Bromodichloromethane       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-00-3    | Chloroethane               | 0.46 U | 2.0 | 0.46 | ug/l  |   |
| 67-66-3    | Chloroform                 | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |   |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |   |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 100-41-4   | Ethylbenzene               | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |   |
| 74-87-3    | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |   |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 12.8   | 1.0 | 0.25 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |   |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |   |
|            |                            |        |     |      | -     |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank



Client Sample ID: KWSMMW-06-0508

Lab Sample ID:

F57467-4

AQ - Ground Water

Date Sampled: Date Received:

05/12/08 05/13/08

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

NAS Key West, Key West, FL

VOA PPL List + MTBE

| CAS No.                        | Compound                                               | Result                     | RL                | MDL                  | Units                | Q |
|--------------------------------|--------------------------------------------------------|----------------------------|-------------------|----------------------|----------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4 | Toluene<br>Trichloroethylene<br>Trichlorofluoromethane | 0.30<br>0.38 U<br>0.43 U   | 1.0<br>1.0<br>2.0 | 0.27<br>0.38<br>0.43 | ug/l<br>ug/l         | I |
| 75-01-4<br>1330-20-7           | Vinyl chloride Xylene (total)                          | 0.43 U<br>0.34 U<br>0.56 U | 1.0<br>3.0        | 0.43<br>0.34<br>0.56 | ug/l<br>ug/l<br>ug/l |   |
| CAS No.                        | Surrogate Recoveries                                   | Run# 1                     | Run# 2            | Limits               |                      |   |
| 1868-53-7<br>17060-07-0        | Dibromofluoromethane<br>1,2-Dichloroethane-D4          | 98%<br>102%                |                   |                      | 16%<br>27%           |   |
| 2037-26-5<br>460-00-4          | Toluene-D8<br>4-Bromofluorobenzene                     | 108%<br>104%               | ·<br>·<br>·       | 86-1                 | 12%<br>20%           |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



## Report of Analysis

Page 1 of 2

Client Sample ID: KWSMMW-07-0508

Lab Sample ID:

F57467-5

Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: Date Received:

05/12/08 05/13/08

Percent Solids: n/a

Method: Project:

NAS Key West, Key West, FL

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 M0027518.D 1 05/23/08 MMn/a n/a VM1133

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL   | Units | Q |
|------------|----------------------------|--------|-----|-------|-------|---|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0   | ug/l  |   |
| 107-13-1   | Acrylonitrile              | 2.0 U  | 10  | 2.0   | ug/l  |   |
| 71-43-2    | Benzene                    | 0.20 U | 1.0 | 0.20  | ug/l  |   |
| 75-27-4    | Bromodichloromethane       | 0.29 U | 1.0 | 0.29  | ug/l  |   |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28  | ug/l  |   |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20  | ug/l  |   |
| 75-00-3    | Chloroethane               | 0.46 U | 2.0 | 0.46  | ug/l  |   |
| 67-66-3    | Chloroform                 | 0.21 U | 1.0 | 0.21  | ug/l  |   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2   | ug/l  |   |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29  | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane         | 0,25 U | 1.0 | 0.25  | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23  | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20  | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25  | ug/l  |   |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20. | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0   | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28  | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24  | ug/l  |   |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23  | ug/l  |   |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20  | ug/l  |   |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22  | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20  | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21  | ug/l  |   |
| 100-41-4   | Ethylbenzene               | 0.20 U | 1.0 | 0.20  | ug/l  |   |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54  | ug/l  |   |
| 74-87-3    | Methyl chloride            | 2.1    | 2.0 | 0.38  | ug/l  |   |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0   | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 20.9   | 1.0 | 0.25  | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29  | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37  | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30  | ug/l  |   |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25  | ug/l  |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





Client Sample ID: KWSMMW-07-0508

Lab Sample ID:

F57467-5

Matrix:

AQ - Ground Water

SW846 8260B

Date Sampled: 05/12/08 Date Received:

05/13/08 Percent Solids: n/a

Method: Project:

NAS Key West, Key West, FL

VOA PPL List + MTBE

| CAS No.                                                | Compound                                                                                   | Result                                       | RL                              | MDL                                  | Units                                | Q |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4<br>75-01-4<br>1330-20-7 | Toluene<br>Trichloroethylene<br>Trichlorofluoromethane<br>Vinyl chloride<br>Xylene (total) | 0.79<br>0.38 U<br>0.43 U<br>0.34 U<br>0.56 U | 1.0<br>1.0<br>2.0<br>1.0<br>3.0 | 0.27<br>0.38<br>0.43<br>0.34<br>0.56 | ug/l<br>ug/l<br>ug/l<br>ug/l<br>ug/l | I |
| CAS No.                                                | Surrogate Recoveries                                                                       | Run# 1                                       | Run# 2                          | Limi                                 | ts                                   |   |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4       | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene        | 98%<br>103%<br>106%<br>104%                  | ·                               | 87-1<br>76-1<br>86-1<br>84-1         | 27%<br>12%                           |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





Client Sample ID: KWSMMW-08-0508

Lab Sample ID: Matrix:

F57467-6

AQ - Ground Water

Date Sampled: Date Received:

05/12/08

Method:

SW846 8260B

05/13/08

Project:

NAS Key West, Key West, FL

DF

1

Percent Solids:

n/a

Q

Run #1

File ID M0027519.D Analyzed 05/23/08

By MM n/a

Prep Date

Prep Batch n/a

Analytical Batch VM1133

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units |
|------------|----------------------------|--------|-----|------|-------|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |
| 107-13-1   | Acrylonitrile              | 2.2    | 10  | 2.0  | ug/l  |
| 71-43-2    | Benzene                    | 0.20 U | 1.0 | 0.20 | ug/l  |
| 75-27-4    | Bromodichloromethane       | 0.29 U | 1.0 | 0.29 | ug/l  |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |
| 75-00-3    | Chloroethane               | 0.46 U | 2.0 | 0.46 | ug/l  |
| 67-66-3    | Chloroform                 | 1.2    | 1.0 | 0.21 | ug/l  |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |
| 100-41-4   | Ethylbenzene               | 4.1    | 1.0 | 0.20 | ug/l  |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |
| 74-87-3    | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |
| 1634-04-4  | Methyl Tert Butyl Ether    | 8.5    | 1.0 | 0.25 | ug/l  |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



NAS Key West, Key West, FL

Client Sample ID: KWSMMW-08-0508 Lab Sample ID:

Matrix: Method:

Project:

F57467-6

AQ - Ground Water

SW846 8260B

Date Sampled: Date Received:

Report of Analysis

05/12/08

05/13/08

Percent Solids: n/a

#### VOA PPL List + MTBE

| CAS No.                                          | Compound                                                                            | Result                     | RL                | MDL                  | Units                    | Q |
|--------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------|-------------------|----------------------|--------------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4                   | Toluene Trichloroethylene Trichlorofluoromethane                                    | 0.60<br>0.38 U<br>0.43 U   | 1.0<br>1.0<br>2.0 | 0.27<br>0.38<br>0.43 | ug/l<br>ug/l             | I |
| 75-01-4<br>1330-20-7                             | Vinyl chloride Xylene (total)                                                       | 0.34 U<br>16.6             | 1.0<br>3.0        | 0.43<br>0.34<br>0.56 | ug/l<br>ug/l<br>ug/l     |   |
| CAS No.                                          | Surrogate Recoveries                                                                | Run# 1                     | Run# 2            | Lim                  | its                      |   |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4 | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 96%<br>102%<br>106%<br>99% |                   | 76-1                 | 16%<br>27%<br>12%<br>20% |   |



L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank







## Report of Analysis

By

MM

n/a

Page 1 of 2

VM1133

Client Sample ID: KWSMMW-09D-0508

Lab Sample ID: Matrix:

F57467-7

File ID

AO - Ground Water

Method:

SW846 8260B NAS Key West, Key West, FL

DF

1

Analyzed

05/24/08

Date Sampled:

Date Received: 05/13/08

Percent Solids: n/a

Analytical Batch Prep Date Prep Batch

n/a

05/12/08

Run #1 Run #2

Project:

Purge Volume

M0027520.D

Run #1 5.0 ml

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result                                 | RL  | MDL  | Units | Q  |
|------------|----------------------------|----------------------------------------|-----|------|-------|----|
| 107-02-8   | Acrolein                   | 9.0 U                                  | 20  | 9.0  | ug/l  |    |
| 107-13-1   | Acrylonitrile              | 2.0 U                                  | 10  | 2.0  | ug/l  |    |
| 71-43-2    | Benzene                    | 0.49                                   | 1.0 | 0.20 | ug/l  | I  |
| 75-27-4    | Bromodichloromethane       | 0.29 U                                 | 1.0 | 0.29 | ug/l  |    |
| 75-25-2    | Bromoform                  | 0.28 U                                 | 1.0 | 0.28 | ug/l  |    |
| 108-90-7   | Chlorobenzene              | 0.20 U                                 | 1.0 | 0.20 | ug/l  |    |
| 75-00-3    | Chloroethane               | 0.46 U                                 | 2.0 | 0.46 | ug/l  |    |
| 67-66-3    | Chloroform                 | 0.47                                   | 1.0 | 0.21 | ug/l  | Ι. |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U                                  | 5.0 | 1.2  | ug/l  |    |
| 56-23-5    | Carbon tetrachloride       | 0.29 U                                 | 1.0 | 0.29 | ug/l  |    |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U                                 | 1.0 | 0.25 | ug/l  |    |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U                                 | 1.0 | 0.23 | ug/l  |    |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U                                 | 1.0 | 0.20 | ug/l  |    |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U                                 | 1.0 | 0.25 | ug/l  |    |
| 124-48-1   | Dibromochloromethane       | 0.20 U                                 | 1.0 | 0.20 | ug/l  |    |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U                                  | 2.0 | 1.0  | ug/l  |    |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U                                 | 1.0 | 0.28 | ug/l  |    |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U                                 | 1.0 | 0.24 | ug/l  |    |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U                                 | 1.0 | 0.23 | ug/l  |    |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U                                 | 1.0 | 0.20 | ug/l  |    |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U                                 | 1.0 | 0.22 | ug/l  |    |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U                                 | 1.0 | 0.20 | ug/l  |    |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U                                 | 1.0 | 0.21 | ug/l  |    |
| 100-41-4   | Ethylbenzene               | 4.4                                    | 1.0 | 0.20 | ug/l  |    |
| 74-83-9    | Methyl bromide             | 0.54 U                                 | 2.0 | 0.54 | ug/l  |    |
| 74-87-3    | Methyl chloride            | 0.38 U                                 | 2.0 | 0.38 | ug/l  |    |
| 75-09-2    | Methylene chloride         | 1.0 U                                  | 5.0 | 1.0  | ug/l  |    |
| 1634-04-4  | Methyl Tert Butyl Ether    | 3.1                                    | 1.0 | 0.25 | ug/l  |    |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U                                 | 1.0 | 0.29 | ug/l  |    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U                                 | 1.0 | 0.37 | ug/l  |    |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U                                 | 1.0 | 0.30 | ug/l  |    |
| 127-18-4   | Tetrachloroethylene        | 0.25 U                                 | 1.0 | 0.25 | ug/l  |    |
|            | =                          | The second second second second second |     |      | -     |    |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank







Client Sample ID: KWSMMW-09D-0508

Lab Sample ID:

F57467-7

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

NAS Key West, Key West, FL

Date Sampled: 05/12/08 Date Received: 05/13/08

Percent Solids: n/a



#### VOA PPL List + MTBE

| CAS No.                                          | Compound                                                                            | Result                      | RL                | MDL                  | Units                    | Q |
|--------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|-------------------|----------------------|--------------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4                   | Toluene<br>Trichloroethylene<br>Trichlorofluoromethane                              | 2.9<br>0.38 U<br>0.43 U     | 1.0<br>1.0<br>2.0 | 0.27<br>0.38<br>0.43 | ug/l<br>ug/l<br>ug/l     |   |
| 75-01-4<br>1330-20-7                             | Vinyl chloride Xylene (total)                                                       | 0.34 U<br>26.0              | 1.0<br>3.0        | 0.34<br>0.56         | ug/l<br>ug/l             |   |
| CAS No.                                          | Surrogate Recoveries                                                                | Run# 1                      | Run# 2            | Lim                  | its                      |   |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4 | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 97%<br>103%<br>106%<br>102% |                   | 76-1<br>86-1         | 16%<br>27%<br>12%<br>20% |   |

U = Not detectedMDL - Method Detection Limit RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



## Report of Analysis

Page 1 of 1

Client Sample ID: KWSM-FD-01-0508

Lab Sample ID:

F57467-1

Date Sampled:

05/12/08

Matrix: Method: AQ - Ground Water SW846 8270C BY SIM SW846 3510C

Date Received:

05/13/08

Project:

NAS Key West, Key West, FL

Percent Solids: n/a

Run #1

File ID R13734.D DF 1

Analyzed Ву 05/15/08 RB Prep Date 05/14/08

Prep Batch OP25062

Analytical Batch SR636

Run #2

Initial Volume 1040 ml

Final Volume

Run #1

1.0 ml

Run #2

#### **BN PAH List**

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.96 U  | 0.96   | 0.96  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.57    | 0.96   | 0.24  | ug/l  | I |
| 91-57-6   | 2-Methylnaphthalene    | 0.63    | 0.96   | 0.24  | ug/l  | I |
| 91-20-3   | Naphthalene            | 1.1     | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Lim   | its   |   |
| 4165-60-0 | Nitrobenzene-d5        | 54%     |        | 42-1  | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 53%     |        | 40-1  | 06%   |   |
| 1718-51-0 | Terphenyl-d14          | 50%     |        | 39-1  | 21%   |   |



MDL - Method Detection Limit





RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

## Report of Analysis

By

Page 1 of 1

Client Sample ID: KWSMMW-04-0508

Lab Sample ID: Matrix:

F57467-2

AQ - Ground Water

DF

1

Date Sampled:

05/12/08

Method:

SW846 8270C BY SIM SW846 3510C

Date Received:

05/13/08

Project:

NAS Key West, Key West, FL

Percent Solids: n/a

Analytical Batch

Run #1 Run #2 R13735.D

File ID

Analyzed 05/15/08

Prep Date RB 05/14/08

Prep Batch OP25062

SR636

Initial Volume 1040 ml

Final Volume 1.0 ml

Run #1 Run #2

#### **BN PAH List**

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene    | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 91-20-3   | Naphthalene            | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Limi  | ts    |   |
| 4165-60-0 | Nitrobenzene-d5        | 60%     |        | 42-10 | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 59%     |        | 40-10 | 06%   |   |
| 1718-51-0 | Terphenyl-d14          | 56%     |        | 39-17 | 21%   |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





## Report of Analysis

Ву

RB

Page 1 of 1

Client Sample ID: KWSMMW-05-0508

Lab Sample ID: Matrix:

F57467-3

AQ - Ground Water

DF

1

Date Sampled: Date Received:

05/12/08

Method:

SW846 8270C BY SIM SW846 3510C

05/13/08

Project:

Analyzed

05/15/08

Percent Solids: n/a

Prep Date

05/14/08

NAS Key West, Key West, FL

Prep Batch OP25062

Analytical Batch SR636

Run #1 Run #2 R13736.D

File ID

Final Volume

Initial Volume Run #1 1040 ml

1.0 ml

Run #2

**BN PAH List** 

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene    | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 91-20-3   | Naphthalene            | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Limi  | ts    |   |
| 4165-60-0 | Nitrobenzene-d5        | 64%     |        | 42-10 | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 63%     |        | 40-10 | )6%   |   |
| 1718-51-0 | Terphenyl-d14          | 56%     |        | 39-12 | 21%   |   |



MDL - Method Detection Limit

V = Indicates analyte found in associated method blank







RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-06-0508

Lab Sample ID: Matrix:

F57467-4

AQ - Ground Water

Date Sampled:

05/12/08

Method:

SW846 8270C BY SIM SW846 3510C

Date Received: 05/13/08

Percent Solids: n/a

Project: NAS Key West, Key West, FL

File ID Run #1 R13737.D DF 1

Analyzed 05/15/08

By Prep Date RB 05/14/08

Prep Batch OP25062 SR636

**Analytical Batch** 

Run #2

Initial Volume 1030 ml

Final Volume 1.0 ml

Run #1 Run #2

**BN PAH List** 

| CAS No.   | Compound               | Result                        | RL     | MDL   | Units | Q |
|-----------|------------------------|-------------------------------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.49 U                        | 0.97   | 0.49  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.49 U                        | 0.97   | 0.49  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.49 U                        | 0.97   | 0.49  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.049 U                       | 0.19   | 0.049 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.097 U                       | 0.19   | 0.097 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.049 U                       | 0.19   | 0.049 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.097 U                       | 0.19   | 0.097 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.097 U                       | 0.19   | 0.097 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.097 U                       | 0.19   | 0.097 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.049 U                       | 0.19   | 0.049 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.34                          | 0.97   | 0.24  | ug/l  | I |
| 86-73-7   | Fluorene               | 0.26                          | 0.97   | 0.24  | ug/l  | I |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.049 U                       | 0.19   | 0.049 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.24 U                        | 0.97   | 0.24  | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene    | 0.24 U                        | 0.97   | 0.24  | ug/l  |   |
| 91-20-3   | Naphthalene            | 0.24 U                        | 0.97   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.82                          | 0.97   | 0.49  | ug/l  | I |
| 129-00-0  | Pyrene                 | 0.24 U                        | 0.97   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1                        | Run# 2 | Lim   | its   |   |
| 4165-60-0 | Nitrobenzene-d5        | 60%                           |        | 42-1  | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 61%                           |        | 40-1  | 06%   |   |
|           | <b></b>                | <ul><li>大きな製造を設め得る。</li></ul> |        |       |       |   |

U = Not detected

1718-51-0

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

Terphenyl-d14

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

39-121%

V = Indicates analyte found in associated method blank





## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-07-0508

Lab Sample ID:

F57467-5

AQ - Ground Water

Date Sampled:

05/12/08

Matrix: Method:

SW846 8270C BY SIM SW846 3510C

DF

1

Date Received: 05/13/08

Percent Solids: n/a

Project:

NAS Key West, Key West, FL

Analytical Batch

Run #1 Run #2 File ID R13749.D Analyzed 05/16/08

By RB Prep Date 05/14/08

Prep Batch OP25062

SR637

Initial Volume 1040 ml

Final Volume

Run #1

Run #2

1.0 ml

#### **BN PAH List**

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene    | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 91-20-3   | Naphthalene            | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Limi  | ts    |   |
| 4165-60-0 | Nitrobenzene-d5        | 61%     |        | 42-10 | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 55%     |        | 40-10 | 06%   |   |
| 1718-51-0 | Terphenyl-d14          | 46%     |        | 39-12 | 21%   |   |



MDL - Method Detection Limit

V = Indicates analyte found in associated method blank







RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-08-0508

Lab Sample ID:

F57467-6

Matrix:

AQ - Ground Water

SW846 8270C BY SIM SW846 3510C

Date Sampled: 05/12/08

Date Received:

05/13/08

Percent Solids: n/a

File ID DF Prep Date Prep Batch Analytical Batch Analyzed Ву 05/20/08 OP25106 Run #1 W040638.D RB 05/19/08 SW2081 1

Run #2

Method:

Project:

Initial Volume 1040 ml

Final Volume 1.0 ml

NAS Key West, Key West, FL

Run #1

Run #2

**BN PAH List** 

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.58    | 0.96   | 0.24  | ug/l  | I |
| 91-57-6   | 2-Methylnaphthalene    | 0.63    | 0.96   | 0.24  | ug/l  | I |
| 91-20-3   | Naphthalene            | 1.2     | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Lim   | its   |   |
| 4165-60-0 | Nitrobenzene-d5        | 56%     |        | 42-1  | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 45%     |        | 40-1  | 06%   |   |
| 1718-51-0 | Terphenyl-d14          | 65%     |        | 39-1  | 21%   |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





## Report of Analysis

By

RB

Page 1 of 1

Client Sample ID: KWSMMW-09D-0508

File ID

W040639.D

Lab Sample ID:

F57467-7

Date Sampled:

05/12/08

Prep Batch

OP25106

Matrix: Method:

AO - Ground Water SW846 8270C BY SIM SW846 3510C

DF

1

Analyzed

05/20/08

Date Received: 05/13/08

Percent Solids: n/a

NAS Key West, Key West, FL Project:

Prep Date

05/19/08

Analytical Batch

SW2081

Run #1 Run #2

> Initial Volume Final Volume

1040 ml Run #1

1.0 ml

Run #2

#### **BN PAH List**

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.41    | 0.96   | 0.24  | ug/l  | I |
| 91-57-6   | 2-Methylnaphthalene    | 0.68    | 0.96   | 0.24  | ug/l  | I |
| 91-20-3   | Naphthalene            | 1.1     | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Lim   | its   |   |
| 4165-60-0 | Nitrobenzene-d5        | 56%     | 10 mg  | 42-1  | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 46%     | 1      | 40-1  | 06%   |   |
| 1718-51-0 | Terphenyl-d14          | 63%     | 1      | 39-1  | 21%   |   |



MDL - Method Detection Limit

RL = Reporting Limit = PQL

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





L = Indicates value exceeds calibration range

## Report of Analysis

Page 1 of 1

Client Sample ID: KWSM-FD-01-0508

File ID

IJ47335.D

Lab Sample ID: Matrix:

F57467-1

AQ - Ground Water

By

JB

Date Sampled:

Date Received:

05/12/08 05/13/08

Method: FLORIDA-PRO SW846 3510C Project:

Percent Solids: n/a

NAS Key West, Key West, FL

DF

1

Prep Date 05/14/08

Prep Batch

**Analytical Batch** 

OP25066 GII1780

Run #1 Run #2

> Initial Volume Final Volume 1020 ml

Run #1

1.0 ml

Run #2

CAS No.

84-15-1

Compound

Result

Analyzed

05/17/08

RL

MDL

Units

Q

TPH (C8-C40)

o-Terphenyl

0.289 0.25

0.17

mg/l

CAS No. Surrogate Recoveries Run#1

81%

Run#2

Limits

38-122%

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank





## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-04-0508

Lab Sample ID:

F57467-2

AQ - Ground Water

1

Date Sampled: Date Received:

05/12/08

Matrix: Method:

FLORIDA-PRO SW846 3510C

05/13/08

Project:

NAS Key West, Key West, FL

Percent Solids: n/a

Analytical Batch

Run #1

File ID IJ47350.D DF Analyzed 05/19/08

By JB Prep Date 05/14/08

Prep Batch OP25066

GIJ1781

Run #2

Initial Volume Final Volume

1040 ml

1.0 ml

Run #1 Run #2

CAS No.

Compound

Result

RL

MDL

0.16

Units

Q

TPH (C8-C40)

0.16 U 0.24

mg/l

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

84-15-1

o-Terphenyl

92%

38-122%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



## Report of Analysis

Page 1 of 1

| Client Sample ID | KWSMMW-05-0508            |
|------------------|---------------------------|
| Chent Sample LD. | TC AA OTATTAT AA -00-0000 |

Lab Sample ID:

F57467-3

Matrix:

AQ - Ground Water

FLORIDA-PRO SW846 3510C

1

Date Sampled: 05/12/08 Date Received: 05/13/08

Method: Project:

NAS Key West, Key West, FL

Percent Solids: n/a

| <br>    |    |          |
|---------|----|----------|
| File ID | DF | Analyzed |

By

JB

Prep Date 05/14/08

Prep Batch OP25066

Analytical Batch GIJ1780

Run #1 Run #2

|        | Initial Volume | Final Volume |
|--------|----------------|--------------|
| Run #1 | 1010 ml        | 1.0 ml       |
|        |                |              |

IJ47337.D

Run #2

CAS No.

Compound

Result

05/17/08

RL

MDL

Q Units

I

TPH (C8-C40)

0.223 0.25

0.17

mg/l

CAS No. Surrogate Recoveries Run#1

Run# 2

Limits

84-15-1

o-Terphenyl

121%

38-122%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-06-0508

File ID

IJ47338.D

Lab Sample ID: Matrix:

F57467-4

AQ - Ground Water

Date Sampled: Date Received:

05/12/08

Method:

FLORIDA-PRO SW846 3510C

05/13/08

Project:

NAS Key West, Key West, FL

DF

1

Percent Solids:

n/a

Prep Batch **Analytical Batch** 

Run #1

Run #2 Initial Volume

By

JB

Analyzed

05/17/08

Prep Date 05/14/08

OP25066

GIJ1780

Run #1

CAS No.

1020 ml

Final Volume 1.0 ml

Run #2

Compound

Result

RL

MDL

Units

Q

TPH (C8-C40)

0.17 U 0.25

0.17

mg/l

CAS No. Surrogate Recoveries Run#1

Run#2

Limits

84-15-1

o-Terphenyl

119%

38-122%



MDL - Method Detection Limit

RL = Reporting Limit = POL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-07-0508

Lab Sample ID: Matrix:

F57467-5

AQ - Ground Water

Date Sampled:

05/12/08

Method:

FLORIDA-PRO SW846 3510C

Date Received:

05/13/08

Project:

NAS Key West, Key West, FL

Percent Solids: n/a

**Analytical Batch** 

Run #1 Run #2

By JB Prep Date 05/14/08

Prep Batch OP25066

GIJ1780

Run #1 Run #2 Initial Volume Final Volume 1030 ml

1.0 ml

DF

1

CAS No. Compound

File ID

IJ47339.D

Result

Analyzed

05/17/08

RL

MDL

0.17

Units

Q

mg/l

TPH (C8-C40)

0.429 Run#1

0.24 Run#2

Limits

84-15-1

CAS No.

o-Terphenyl

Surrogate Recoveries

99%

38-122%

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





## Report of Analysis

By

JB

Page 1 of 1

Client Sample ID: KWSMMW-08-0508

Lab Sample ID: Matrix:

F57467-6

Date Sampled:

05/12/08

Method:

AO - Ground Water

Date Received:

05/13/08

Project:

FLORIDA-PRO SW846 3510C NAS Key West, Key West, FL

Percent Solids: n/a

Run #1

File ID IJ47340.D DF Analyzed 05/17/08

Prep Date 05/14/08

Prep Batch OP25066

**Analytical Batch** GIJ1780

Run #2

Initial Volume 1040 ml Run #1

Final Volume

Run #2

1.0 ml

1

CAS No.

Compound

Result

RL

MDL

Units Q

0.325 0.24

0.16

mg/l

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

84-15-1

o-Terphenyl

TPH (C8-C40)

93%

38-122%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank





## Report of Analysis

Page 1 of 1

Client Sample ID: KWSMMW-09D-0508

Lab Sample ID: Matrix:

F57467-7

AQ - Ground Water

Date Sampled: Date Received:

05/12/08

Method: Project:

FLORIDA-PRO SW846 3510C NAS Key West, Key West, FL

05/13/08

Percent Solids: n/a

Analytical Batch

Run #1 Run #2 IJ47349.D

File ID

DF 1

Analyzed Ву 05/19/08 JB Prep Date 05/14/08

Prep Batch OP25066

GIJ1781

Run #1

Run #2

CAS No.

Initial Volume 1030 ml

Final Volume 1.0 ml

Compound

TPH (C8-C40)

Result

RL

MDL

0.17

Units

Q

I

mg/l

CAS No.

Surrogate Recoveries

Run#1

0.201 0.24

Run#2

Limits

84-15-1

o-Terphenyl

80%

38-122%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





## APPENDIX C

SUPPORT DOCUMENTATION

#### SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Tetra Tech NUS

Job No:

F57467

Site:

NAS Key West, Key West, FL

Report Date: 5/29/2008 10:08:53

7 Samples were collected on 05/12/2008 and were received at Accutest on 05/13/2008 properly preserved, at 2.4 Deg. C and intact. These Samples received an Accutest job number of F57467. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### Volatiles by GCMS by Method SW846 8260B

Matrix: AQ

Batch ID: VJ2472

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F57465-2MS, F57465-2MSD were used as the OC samples indicated.

Blank Spike Recovery for Acrylonitrile is outside control limits.

Matrix Spike and Matrix Spike Duplicate Recoverys for 2-Chloroethyl vinyl ether, Acrylonitrile, Trichlorofluoromethane are outside control limits. Probable cause: due to matrix interference.

Matrix: AQ

Batch ID: VM1133

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F57606-1MS, F57606-1MSD were used as the QC samples indicated.

Matrix Spike and Matrix Spike Duplicate Recoverys for 2-Chloroethyl vinyl ether, Dichlorodifluoromethane are outside control limits. Probable cause: due to matrix interference.

Matrix: AQ

Batch ID: VM1134

All samples were analyzed within the recommended method holding time.

Samples F57492-1MS, F57492-1MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix Spike Recoverys for 2-Chloroethyl vinyl ether, Acrolein are outside control limits. Probable cause: due to matrix

Matrix Spike Duplicate Recoverys for 2-Chloroethyl vinyl ether, Chlorobenzene are outside control limits. Probable cause: due to matrix interference.

RPD for MSD for 2-Chloroethyl vinyl ether is outside control limits for sample F57492-1MSD. Probable cause due to sample non-homogeneity.

## Extractables by GCMS by Method SW846 8270C BY SIM

Matrix: AO

Batch ID: OP25062

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F57465-6MS, F57465-6MSD were used as the QC samples indicated.

Matrix: AO

Batch ID: OP25106

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F57485-3MS, F57485-3MSD were used as the QC samples indicated.

Matrix Spike Recoverys for 2-Methylnaphthalene, Anthracene, Phenanthrene are outside control limits. Probable cause: due to matrix interference.

Thursday, May 29, 2008



### Extractables by GC by Method FLORIDA-PRO

Matrix: AO

Narrative prepared by:

Batch ID: OP25066

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Samples F57466-3MS, F57466-3MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix Spike and Matrix Spike Duplicate Recoverys for TPH (C8-C40) are outside control limits. Probable cause: due to matrix interference.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used.

|                                                | Date: May 29, 2008 |
|------------------------------------------------|--------------------|
| Ellen Pampel, Inorganic QA (signature on file) |                    |

Thursday, May 29, 2008



2

# HOLDIEME

**SDG** F57467

| SORT | UNITS | NSAMPLE         | LAB_ID   | QC_TYPE | SAMP_DATE | EXTR_DATE | ANAL_DATE | SMP_EXTR | EXTR_ANL | SMP_ANL |
|------|-------|-----------------|----------|---------|-----------|-----------|-----------|----------|----------|---------|
| OS - | %     | KWSMMW-04-0508  | F57467-2 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | 1        | 3       |
| os   | %     | KWSMMW-05-0508  | F57467-3 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | 1        | 3       |
| os   | %     | KWSMMW-06-0508  | F57467-4 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | . 1      | 3       |
| os   | %     | KWSMMW-07-0508  | F57467-5 | NM      | 5/12/2008 | 5/14/2008 | 5/16/2008 | 2        | 2        | 4       |
| o's  | %     | KWSMMW-08-0508  | F57467-6 | NM      | 5/12/2008 | 5/19/2008 | 5/20/2008 | 7        | 1        | 8       |
| os   | %     | KWSMMW-09D-0508 | F57467-7 | NM      | 5/12/2008 | 5/19/2008 | 5/20/2008 | 7        | 1        | 8       |
| OS   | %     | KWSM-FD-01-0508 | F57467-1 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | . 1      | . 3     |
| os   | UG/L  | KWSMMW-05-0508  | F57467-3 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | 1        | 3       |
| os   | UG/L  | KWSMMW-09D-0508 | F57467-7 | NM      | 5/12/2008 | 5/19/2008 | 5/20/2008 | 7        | 1        | 8       |
| os   | UG/L  | KWSMMW-08-0508  | F57467-6 | NM      | 5/12/2008 | 5/19/2008 | 5/20/2008 | 7        | 1        | 8       |
| os   | UG/L  | KWSMMW-06-0508  | F57467-4 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | 1        | 3       |
| os   | UG/L  | KWSMMW-04-0508  | F57467-2 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | 1        | 3       |
| os   | UG/L  | KWSM-FD-01-0508 | F57467-1 | NM      | 5/12/2008 | 5/14/2008 | 5/15/2008 | 2        | 1        | 3       |
| os   | UG/L  | KWSMMW-07-0508  | F57467-5 | NM      | 5/12/2008 | 5/14/2008 | 5/16/2008 | 2        | 2        | 4       |
| OV   | %     | KWSMMW-08-0508  | F57467-6 | NM      | 5/12/2008 | 5/23/2008 | 5/23/2008 | 11       | 0        | 11      |
|      |       |                 | •        |         |           |           |           |          |          |         |

Thursday, June 26, 2008

| UNITS | NSAMPLE                                | LAB_ID                                                                                                                                                                                                                                                                                                                                    | QC_TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMP_DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EXTR_DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ANAL_DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SMP_EXTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EXTR_ANL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SMP_ANL                                                                      |
|-------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| %     | KWSMMW-09D-0508                        | F57467-7                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                           |
| % .   | KWSM-FD-01-0508                        | F57467-1                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                           |
| %     | KWSMMW-04-0508                         | F57467-2                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                           |
| %     | KWSMMW-05-0508                         | F57467-3                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                           |
| %     | KWSMMW-06-0508                         | F57467-4                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                           |
| %     | KWSMMW-07-0508                         | F57467-5                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                           |
| UG/L  | KWSMMW-04-0508                         | F57467-2                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                           |
| UG/L  | KWSMMW-05-0508                         | F57467-3                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                           |
| UG/L  | KWSMMW-06-0508                         | F57467-4                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                           |
| UG/L  | KWSMMW-07-0508                         | F57467-5                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11                                                                           |
| UG/L  | KWSMMW-08-0508                         | F57467-6                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 11                                                                         |
| UG/L  | KWSMMW-09D-0508                        | F57467-7                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/24/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                           |
| UG/L  | KWSM-FD-01-0508                        | F57467-1                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/23/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                           |
| %     | KWSMMW-05-0508                         | F57467-3                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/14/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/17/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                            |
| %     | KWSMMW-09D-0508                        | F57467-7                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/14/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/19/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                            |
| %     | KWSMMW-08-0508                         | F57467-6                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/14/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/17/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , 5                                                                          |
| %     | KWSMMW-06-0508                         | F57467-4                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/14/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/17/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                            |
| %     | KWSMMW-04-0508                         | F57467-2                                                                                                                                                                                                                                                                                                                                  | NM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/12/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5/14/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5/19/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                            |
|       | % % % % JG/L JG/L JG/L JG/L JG/L % % % | KWSM-FD-01-0508  KWSMMW-04-0508  KWSMMW-05-0508  KWSMMW-06-0508  KWSMMW-07-0508  JG/L KWSMMW-04-0508  JG/L KWSMMW-05-0508  JG/L KWSMMW-05-0508  JG/L KWSMMW-07-0508  JG/L KWSMMW-07-0508  KWSMMW-07-0508  KWSMMW-07-0508  KWSMMW-08-0508  KWSMMW-09D-0508  KWSMMW-05-0508  KWSMMW-05-0508  KWSMMW-05-0508  KWSMMW-05-0508  KWSMMW-08-0508 | KWSM-FD-01-0508 F57467-1  KWSMMW-04-0508 F57467-2  KWSMMW-05-0508 F57467-3  KWSMMW-06-0508 F57467-4  KWSMMW-07-0508 F57467-5  JG/L KWSMMW-04-0508 F57467-2  JG/L KWSMMW-05-0508 F57467-3  JG/L KWSMMW-06-0508 F57467-4  JG/L KWSMMW-07-0508 F57467-5  JG/L KWSMMW-07-0508 F57467-6  JG/L KWSMMW-08-0508 F57467-7  JG/L KWSMMW-09D-0508 F57467-7  KWSMMW-05-0508 F57467-7  KWSMMW-05-0508 F57467-7  KWSMMW-05-0508 F57467-7  KWSMMW-05-0508 F57467-7  KWSMMW-08-0508 F57467-7  KWSMMW-08-0508 F57467-6  KWSMMW-08-0508 F57467-6  KWSMMW-08-0508 F57467-6  KWSMMW-08-0508 F57467-6  KWSMMW-08-0508 F57467-6  KWSMMW-08-0508 F57467-6 | KWSM-FD-01-0508 F57467-1 NM KWSMMW-04-0508 F57467-2 NM KWSMMW-05-0508 F57467-3 NM KWSMMW-06-0508 F57467-4 NM KWSMMW-07-0508 F57467-5 NM JG/L KWSMMW-04-0508 F57467-2 NM JG/L KWSMMW-05-0508 F57467-3 NM JG/L KWSMMW-05-0508 F57467-3 NM JG/L KWSMMW-06-0508 F57467-4 NM JG/L KWSMMW-07-0508 F57467-5 NM JG/L KWSMMW-07-0508 F57467-5 NM JG/L KWSMMW-08-0508 F57467-1 NM JG/L KWSMMW-08-0508 F57467-7 NM KWSMMW-09D-0508 F57467-1 NM KWSMMW-05-0508 F57467-7 NM | KWSMMW-04-0508 F57467-1 NM 5/12/2008 KWSMMW-04-0508 F57467-2 NM 5/12/2008 KWSMMW-05-0508 F57467-3 NM 5/12/2008 KWSMMW-06-0508 F57467-4 NM 5/12/2008 KWSMMW-07-0508 F57467-5 NM 5/12/2008 JG/L KWSMMW-04-0508 F57467-2 NM 5/12/2008 JG/L KWSMMW-05-0508 F57467-3 NM 5/12/2008 JG/L KWSMMW-05-0508 F57467-3 NM 5/12/2008 JG/L KWSMMW-06-0508 F57467-4 NM 5/12/2008 JG/L KWSMMW-06-0508 F57467-5 NM 5/12/2008 JG/L KWSMMW-07-0508 F57467-6 NM 5/12/2008 JG/L KWSMMW-08-0508 F57467-7 NM 5/12/2008 JG/L KWSMMW-08-0508 F57467-7 NM 5/12/2008 JG/L KWSMMW-09D-0508 F57467-7 NM 5/12/2008 JG/L KWSMMW-09D-0508 F57467-7 NM 5/12/2008 JG/L KWSMMW-09D-0508 F57467-1 NM 5/12/2008 JG/L KWSMMW-09D-0508 F57467-1 NM 5/12/2008 JG/L KWSMMW-09D-0508 F57467-1 NM 5/12/2008 JG/L KWSMMW-08-0508 F57467-1 NM 5/12/2008 | 66         KWSM-FD-01-0508         F57467-1         NM         5/12/2008         5/23/2008           66         KWSMMW-04-0508         F57467-2         NM         5/12/2008         5/24/2008           66         KWSMMW-05-0508         F57467-3         NM         5/12/2008         5/24/2008           66         KWSMMW-06-0508         F57467-4         NM         5/12/2008         5/23/2008           66         KWSMMW-07-0508         F57467-5         NM         5/12/2008         5/23/2008           66         KWSMMW-07-0508         F57467-2         NM         5/12/2008         5/23/2008           JG/L         KWSMMW-04-0508         F57467-2         NM         5/12/2008         5/24/2008           JG/L         KWSMMW-06-0508         F57467-3         NM         5/12/2008         5/23/2008           JG/L         KWSMMW-07-0508         F57467-4         NM         5/12/2008         5/23/2008           JG/L         KWSMMW-08-0508         F57467-5         NM         5/12/2008         5/23/2008           JG/L         KWSMMW-09D-0508         F57467-7         NM         5/12/2008         5/23/2008           JG/L         KWSMMW-05-0508         F57467-3         NM         5/12/2008         5/1 | KWSM-FD-01-0508 F57467-1 NM 5/12/2008 5/23/2008 5/23/2008 KWSMMW-04-0508 F57467-2 NM 5/12/2008 5/24/2008 5/24/2008 KWSMMW-05-0508 F57467-3 NM 5/12/2008 5/24/2008 5/24/2008 KWSMMW-05-0508 F57467-4 NM 5/12/2008 5/23/2008 5/23/2008 KWSMMW-07-0508 F57467-5 NM 5/12/2008 5/23/2008 5/23/2008 JG/L KWSMMW-04-0508 F57467-2 NM 5/12/2008 5/24/2008 5/24/2008 JG/L KWSMMW-05-0508 F57467-3 NM 5/12/2008 5/24/2008 5/24/2008 JG/L KWSMMW-05-0508 F57467-3 NM 5/12/2008 5/24/2008 5/24/2008 JG/L KWSMMW-05-0508 F57467-4 NM 5/12/2008 5/23/2008 5/23/2008 JG/L KWSMMW-05-0508 F57467-5 NM 5/12/2008 5/23/2008 5/23/2008 JG/L KWSMMW-05-0508 F57467-5 NM 5/12/2008 5/23/2008 5/23/2008 JG/L KWSMMW-05-0508 F57467-6 NM 5/12/2008 5/23/2008 5/23/2008 JG/L KWSMMW-05-0508 F57467-7 NM 5/12/2008 5/13/2008 5/23/2008 JG/L KWSMMW-05-0508 F57467-7 NM 5/12/2008 5/13/2008 5/13/2008 | 66         KWSM-FD-01-0508         F57467-1         NM         5/12/2008         5/23/2008         5/23/2008         11           66         KWSMMW-04-0508         F57467-2         NM         5/12/2008         5/24/2008         5/24/2008         12           66         KWSMMW-05-0508         F57467-3         NM         5/12/2008         5/24/2008         5/24/2008         12           66         KWSMMW-05-0508         F57467-4         NM         5/12/2008         5/23/2008         5/23/2008         11           66         KWSMMW-07-0508         F57467-5         NM         5/12/2008         5/23/2008         5/23/2008         11           66         KWSMMW-04-0508         F57467-5         NM         5/12/2008         5/23/2008         5/23/2008         11           10G/L         KWSMMW-04-0508         F57467-3         NM         5/12/2008         5/24/2008         5/24/2008         12           10G/L         KWSMMW-05-0508         F57467-4         NM         5/12/2008         5/23/2008         5/23/2008         11           10G/L         KWSMMW-05-0508         F57467-5         NM         5/12/2008         5/23/2008         5/23/2008         11           10G/L         KWSMMW-05-0508 | KWSMMW-090-0508   F57467-7   NM   S/12/2008   S/24/2008   S/24/2008   12   0 |

Fhursday, June 26, 2008

| SORT | UNITS | NSAMPLE         | LAB_ID   | QC_TYPE | SAMP_DATE | EXTR_DATE | ANAL_DATE | SMP_EXTR | EXTR_ANL | SMP_ANL |
|------|-------|-----------------|----------|---------|-----------|-----------|-----------|----------|----------|---------|
| TPH  | %     | KWSM-FD-01-0508 | F57467-1 | NM      | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |
| TPH  | %     | KWSMMW-07-0508  | F57467-5 | NM      | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |
| TPH  | MG/L  | KWSMMW-09D-0508 | F57467-7 | NM      | 5/12/2008 | 5/14/2008 | 5/19/2008 | 2        | 5        | 7       |
| TPH  | MG/L  | KWSM-FD-01-0508 | F57467-1 | NM      | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |
| TPH  | MG/L  | KWSMMW-04-0508  | F57467-2 | NM      | 5/12/2008 | 5/14/2008 | 5/19/2008 | 2        | 5        | 7       |
| TPH  | MG/L  | KWSMMW-05-0508  | F57467-3 | NM      | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |
| TPH  | MG/L  | KWSMMW-06-0508  | F57467-4 | NM .    | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |
| TPH  | MG/L  | KWSMMW-07-0508  | F57467-5 | NM      | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |
| TPH  | MG/L  | KWSMMW-08-0508  | F57467-6 | NM      | 5/12/2008 | 5/14/2008 | 5/17/2008 | 2        | 3        | 5       |

Thursday, June 26, 2008

## NAS KEY WEST WATER DATA F57467

| FRACTION | CHEMICAL                | KWSMMW-08-0508 | UNITS | KWSM-FD-01-0508 | RPD    | D    |          |
|----------|-------------------------|----------------|-------|-----------------|--------|------|----------|
| OV       | ACRYLONITRILE           | 2.2            | UG/L  | ND              | 200.00 | 2.20 | C)       |
| OV       | CHLOROFORM              | 1.2            | UG/L  | 1               | 18.18  | 0.20 |          |
| OV       | ETHYLBENZENE            | 4.1            | UG/L  | 2.8             | 37.68  | 1.30 |          |
| OV       | METHYL TERT-BUTYL ETHER | 8.5            | UG/L  | 8.2             | 3.59   | 0.30 | ٦,       |
| OV       | TOLUENE                 | 0.6            | UG/L  | 0.55 l          | 8.70   | 0.05 |          |
| OV       | TOTAL XYLENES           | 16.6           | UG/L  | 12.7            | 26.62  | 3.90 | 7        |
| PAH      | 1-METHYLNAPHTHALENE     | 0.58           | UG/L  | 0.57            | 1.74   | 0.01 | -        |
| PAH      | 2-METHYLNAPHTHALENE     | 0.63 I         | UG/L  | 0.63 I          | 0.00   | 0.00 | $\dashv$ |
| PAH      | NAPHTHALENE             | 1.2            | UG/L  | 1.1             | 8.70   | 0.10 | $\dashv$ |
| PET      | TPH (C08-C40)           | 0.325          | MG/L  | 0,289           | 11.73  | 0.04 | $\dashv$ |

Current RPD Quality Control Limit: 30 %. Shaded cells indicate RPDs that exceed the applicable quality control limit.

## Sample Summary

Tetra Tech NUS

NAS Key West, Key West, FL Project No: 112G00979 PO# 1032274

Job No:

F57467

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matr<br>Code |              | Client<br>Sample ID |
|------------------|-------------------|----------|----------|--------------|--------------|---------------------|
| F57467-1         | 05/12/08          | 00:00 GB | 05/13/08 | AQ           | Ground Water | KWSM-FD-01-0508     |
| F57467-2         | 05/12/08          | 09:09 GB | 05/13/08 | AQ           | Ground Water | KWSMMW-04-0508      |
| F57467-3         | 05/12/08          | 11:56 GB | 05/13/08 | AQ           | Ground Water | KWSMMW-05-0508      |
| F57467-4         | 05/12/08          | 10:03 GB | 05/13/08 | AQ           | Ground Water | KWSMMW-06-0508      |
| F57467-5         | 05/12/08          | 11:07 GB | 05/13/08 | AQ           | Ground Water | KWSMMW-07-0508      |
| F57467-6         | 05/12/08          | 13:45 GB | 05/13/08 | AQ           | Ground Water | KWSMMW-08-0508      |
| F57467-7         | 05/12/08          | 14:45 GB | 05/13/08 | AQ           | Ground Water | KWSMMW-09D-0508     |



F57467 TETRA TECH NUS, INC

| Project No<br>112G005 | 79              |                 | VEST NAS           |            |        | oject Manager:<br>uck Bryan   |              | Carrier:<br>Federal Express |                   | Laboratory Name:<br>Accutest Laboratories Southea<br>4405 Vineland Road<br>Orlando, FL 32811 |          |                                                 |
|-----------------------|-----------------|-----------------|--------------------|------------|--------|-------------------------------|--------------|-----------------------------|-------------------|----------------------------------------------------------------------------------------------|----------|-------------------------------------------------|
| ask No:               |                 | Turn A<br>Stand | round Time:<br>ard |            |        | ld Ops Leader:<br>ry Braganza |              | Carrier,                    | /Waybill No.      |                                                                                              |          | Point of Contact:<br>Jean Smith<br>407-425-6700 |
| Date .                | Sample ID #     | Time            | Analysis           | Loc ID     | Matrix | Description                   | Preservative | Container<br>Count          | Container<br>Type | Container<br>Reqs                                                                            | Comments |                                                 |
|                       | KWSM-FD-01-0508 |                 | SW-846 8270C SIM   | <u> </u>   | _      | PAHs                          | 4°C          | 2                           | Glass - Ambei     | 11.                                                                                          |          |                                                 |
|                       | KWSM-FD-01-0508 | 1               | FL-PRO             | QC         | GW     | TRPH                          | 4°C/H2SO     | 4 2                         | Glass - Amber     | 1L                                                                                           |          |                                                 |
|                       | KWSM-FD-01-0508 |                 | SW-846 5030B/8260  |            |        | VOCs (incl BTEX + MTBE)       |              | 3                           | Glass - Clear     | 40ml vials                                                                                   |          |                                                 |
| 1                     | KWSMMW-04-0508  |                 | SW-846 8270C SIM   | 1          | GW     | PAHs                          | 4°C          | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
|                       | KWSMMW-04-0508  |                 | SW-848 6030B/8260  |            |        |                               |              | 3                           | Glass - Clear     | 40ml vials                                                                                   |          | •                                               |
|                       | KWSMMW-04-0508  |                 | FL-PRO             | KWSMMW-04  | GW     | TRPH                          | 4°C/H2SO     | 12                          | Glass - Amber     | 1L .                                                                                         |          |                                                 |
|                       | KWSMMW-05-0508  |                 | FL-PRO             |            |        | TRPH                          | 4°C/H2SO     | 1 2                         | Glass - Amber     |                                                                                              |          |                                                 |
|                       | KWSMMW-05-0508  | _1 1            | SW-846 5030B/8260  |            |        | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3                           | Glass - Clear     | 40ml vials                                                                                   |          |                                                 |
|                       | KWSMMW-05-0508  |                 | SW-846 8270C SIM   |            |        | PAHs                          | 4°C          | 2                           | Glass - Amber     |                                                                                              |          |                                                 |
|                       | KWSMMW-06-0508  |                 | SW-846 8270C SIM   |            |        | PAHs                          | 4°C          | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
|                       | KWSMMW-06-0508  |                 | SW-846 5030B/8280  |            |        | VOCs (incl BTEX + MTBE)       |              | 3                           | Glass - Clear     | 40ml vials                                                                                   |          |                                                 |
|                       | KWSMMW-08-0508  |                 | FL-PRO             | <u> </u>   | GW     | TRPH                          | 4°C/H2SO4    | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
|                       | KWSMMW-07-0508  |                 | SW-846 8270C SIM   |            |        | PAHs                          | 4°C          | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
|                       | KWSMMW-07-0508  | 11:07           | SW-846 5030B/8260  | KWSMMW-07  | GW     | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3                           | Glass - Clear     | 40ml vials                                                                                   |          |                                                 |
|                       | WSMMW-07-0508   |                 | FL-PRO             |            |        | TRPH                          | 4°C/H2SO4    | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
| /12/2008              | WSMMW-08-0508   | 13:45           | SW-846 8270C SIM   | KWSMMW-08  | GW     | PAH8                          | 4°C          | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
|                       | WSMMW-08-0508   |                 | FL-PRO             |            | GW     | TRPH                          | 4°C/H2SO4    | 2                           | Glass - Amber     | 1L                                                                                           | _        |                                                 |
| 1                     | WSMMW-08-0508   | 1 1             | SW-846 5030B/8260  | KWSMMW-08  | GW     | VOCs (incl STEX + MTBE)       | 4°C/HCL      | 3                           | Glass - Clear     | 40ml vials                                                                                   |          |                                                 |
|                       | WSMMW-09D-050   |                 |                    | KWSMMW-09D |        |                               | 4°C/H2SO4    | 2                           | Glass - Amber     | 1L                                                                                           |          |                                                 |
| /12/2008              | CWSMMW-09D-050  | 8 14:45         | SW-846 5030B/8260  | KWSMMW-09D | GW     | VOCs (incl BTEX + MTBE)       | 4°C/HCL      | 3                           | Glass - Clear     | 40mi viais                                                                                   |          |                                                 |
| /12/2008              | WSMMW-09D-050   | 14:45           | SW-846 8270C SIM   | KWSMMW-09D | GW     | PAHs                          | 4°C          | 2                           | Glass - Amber     | 1L                                                                                           | _        |                                                 |
|                       |                 |                 |                    | •          |        |                               |              |                             |                   |                                                                                              |          |                                                 |
| . Relingu             | ished By:       | Date:           |                    | Time:      |        | Received By:                  | Date         |                             | Tin               | <u></u>                                                                                      |          | 7                                               |
| ary Bra               | ganza           | 05/12/          |                    | 17:00      |        | Federal Express               |              | 2/2008                      | 17:               |                                                                                              |          | **                                              |
|                       |                 |                 |                    |            |        |                               |              |                             |                   |                                                                                              |          |                                                 |
| . Relinqui            | ished By:       | Date:           | ļ                  | Time:      |        | Received By:                  | Date         |                             | Tim               | ne:                                                                                          |          |                                                 |
|                       | 74              |                 |                    |            |        | 1 Course                      | 1 2          | -12                         | -03               | 09:                                                                                          | 40       | 1.2 1.8 2.4                                     |

F57467: Chain of Custody Page 1 of 2



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACCUTEST LABORATORIES SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MPLE RECEIPT CONFIRMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ACCUTEST'S JOB NUMBER: FS7467 CLIR  DATE/TIME RECEIVED: 5-13-08 09:00 # OR                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ENT: <u>TETPA TECH NUS</u> project: <u>112 600 97 9</u> COOLERS RECEIVED: <u>3</u> COOLER TEMPS: <u>1 2 1 8 9 4</u> UTEST COURIER GREYHOUND DELIVERY OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AIRBILL NUMBERS: 8651 5823 6931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COOLER INFORMATION  CUSTODY SEAL NOT PRESENT OR NOT INTACT CHAIN OF CUSTODY NOT RECEIVED (COC) ANALYSIS REQUESTED IS UNCLEAR OR MISSING SAMPLE DATES OR TIMES UNCLEAR OR MISSING TEMPERATURE CRITERIA NOT MET WET ICE RECEIVED IN COOLER TRIP BLANK INFORMATION TRIP BLANK NOT PROVIDED TRIP BLANK NOT ON COC TRIP BLANK NOT ON COC TRIP BLANK INTACT TRIP BLANK INTACT TRIP BLANK INTACT RECEIVED WATER TRIP BLANK RECEIVED SOIL TRIP BLANK MISC. INFORMATION NUMBER OF ENCORES? NUMBER OF LAB FILTERED METALS? SUMMARY OF COMMENTS: | SAMPLE INFORMATION  SAMPLE LABELS NOT PRESENT ON ALL BOTTLES  CORRECT NUMBER OF CONTAINERS USED  SAMPLE RECEIVED IMPROPERLY PRESERVED  INSUFFICIENT VOLUME FOR ANALYSIS  TIMES ON COC DOES NOT MATCH LABEL(S)  ID'S ON COC DOES NOT MATCH LABEL(S)  VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)  BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED  NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED  UNCLEAR FILTERING INSTRUCTIONS  UNCLEAR COMPOSITING INSTRUCTIONS  SAMPLE CONTAINER(S) RECEIVED BROKEN  % SOLIDS JAR NOT RECEIVED  5035 FIELD KIT NOT FROZEN WITHIN 48 HOUR'S  RESIDUAL CHLORINE PRESENT  (APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| technician signature/date 16 5-13-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TECHNICIAN SIGNATURE/DATE F.M 5-13-08 ASBD 12/17/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

F57467: Chain of Custody

Page 2 of 2



## Volatile Surrogate Recovery Summary

Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Method: SW846 8260B Matrix: AQ

### Samples and QC shown here apply to the above method

| Lab         | Lab        |       |       |       |       |
|-------------|------------|-------|-------|-------|-------|
| Sample ID   | File ID    | S1    | S2    | S3    | S4    |
| •           |            |       |       |       |       |
| F57467-1    | J038563.D  | 96.0  | 97.0  | 104.0 | 105.0 |
| F57467-2    | M0027533.D | 102.0 | 103.0 | 107.0 | 108.0 |
| F57467-3    | M0027534.D | 102.0 | 104.0 | 107.0 | 106.0 |
| F57467-4    | M0027517.D | 98.0  | 102.0 | 108.0 | 104.0 |
| F57467-5    | M0027518.D | 98.0  | 103.0 | 106.0 | 104.0 |
| F57467-6    | M0027519.D | 96.0  | 102.0 | 106.0 | 99.0  |
| F57467-7    | M0027520.D | 97.0  | 103.0 | 106.0 | 102.0 |
| F57465-2MS  | J038552.D  | 98.0  | 98.0  | 99.0  | 103.0 |
| F57465-2MSD | J038553.D  | 99.0  | 98.0  | 100.0 | 102.0 |
| F57492-1MS  | M0027531.D | 100.0 | 103.0 | 97.0  | 101.0 |
| F57492-1MSD | M0027532.D | 102.0 | 102.0 | 97.0  | 101.0 |
| F57606-1MS  | M0027503.D | 101.0 | 101.0 | 99.0  | 102.0 |
| F57606-1MSD | M0027504.D | 100.0 | 101.0 | 100.0 | 102.0 |
| VJ2472-BS   | J038537.D  | 100.0 | 100.0 | 101.0 | 102.0 |
| VJ2472-MB   | J038538.D  | 97.0  | 97.0  | 108.0 | 113.0 |
| VM1133-BS   | M0027497.D | 101.0 | 99.0  | 103.0 | 105.0 |
| VM1133-MB   | M0027498.D | 99.0  | 98.0  | 106.0 | 110.0 |
| VM1134-BS   | M0027524.D | 101.0 | 102.0 | 102.0 | 100.0 |
| VM1134-MB   | M0027525.D | 101.0 | 101.0 | 106.0 | 105.0 |

Surrogate Compounds Recovery Limits

S1 = Dibromofluoromethane87-116% S2 = 1,2-Dichloroethane-D4 76-127% S3 = Toluene-D886-112% S4 = 4-Bromofluorobenzene 84-120%

Page 1 of 1



# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57467

Page 1 of 2

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| F57465-2MS  | J038552.D | 5  | 05/23/08 | KW | n/a       | n/a Î      | VJ2472           |
| F57465-2MSD | J038553.D | 5  | 05/23/08 | KW | n/a       | n/a        | VJ2472           |
| F57465-2    | J038551.D | 5  | 05/23/08 | KW | n/a       | n/a        | VJ2472           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-1

|            |                            | F57465 | -2 | Spike | MS   | MS                  | MSD  | MSD                   |                                         | Limits    |
|------------|----------------------------|--------|----|-------|------|---------------------|------|-----------------------|-----------------------------------------|-----------|
| CAS No.    | Compound                   | ug/l   | Q  | ug/l  | ug/l | %                   | ug/l | %                     | RPD                                     | Rec/RPD   |
| 107-02-8   | Acrolein                   | 100 U  |    | 625   | 644  | 103                 | 623  | 100                   | 3                                       | 33-157/21 |
| 107-13-1   | Acrylonitrile              | 50 U   |    | 625   | 825  | 132*                | 825  | 132*                  | 0                                       | 62-124/13 |
| 71-43-2    | Benzene                    | 2.2    | I  | 125   | 136  | 107                 | 135  | 106                   | 1                                       | 83-124/11 |
| 75-27-4    | Bromodichloromethane       | 5.0 U  |    | 125   | 116  | 93                  | 114  | 91                    | 2                                       | 76-116/10 |
| 75-25-2    | Bromoform                  | 5.0 U  |    | 125   | 109  | 87                  | 109  | 87                    | 0                                       | 68-128/11 |
| 108-90-7   | Chlorobenzene              | 5.0 U  |    | 125   | 134  | 107                 | 134  | 107                   | 0                                       | 87-115/9  |
| 75-00-3    | Chloroethane               | 10 U   |    | 125   | 118  | 94                  | 117  | 94                    | 1                                       | 54-166/20 |
| 67-66-3    | Chloroform                 | 5.0 U  |    | 125   | 145  | 116                 | 147  | 118                   | 1                                       | 85-123/10 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 25 U   |    | 625   | ND   | 0*                  | ND   | 0*                    | nc                                      | 63-125/24 |
| 56-23-5    | Carbon tetrachloride       | 5.0 U  |    | 125   | 140  | 112                 | 138  | 110                   | 1                                       | 74-139/13 |
| 75-34-3    | 1,1-Dichloroethane         | 5.0 U  |    | 125   | 137  | 110                 | 136  | 109                   | 1                                       | 82-127/10 |
| 75-35-4    | 1,1-Dichloroethylene       | 5.0 U  |    | 125   | 128  | 102                 | 127  | 102                   | 1                                       | 75-133/13 |
| 107-06-2   | 1,2-Dichloroethane         | 5.0 U  |    | 125   | 121  | 97                  | 120  | 96                    | 1                                       | 76-122/11 |
| 78-87-5    | 1,2-Dichloropropane        | 5.0 U  |    | 125   | 123  | 98                  | 124  | 99                    | 1                                       | 81-120/11 |
| 124-48-1   | Dibromochloromethane       | 5.0 U  |    | 125   | 113  | 90                  | 114  | 91                    | 1                                       | 74-116/11 |
| 75-71-8    | Dichlorodifluoromethane    | 10 U   |    | 125   | 84.5 | 68                  | 82.0 | 66                    | 3                                       | 34-158/22 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 5.0 U  |    | 125   | 124  | 99                  | 126  | 101                   | 2                                       | 81-114/10 |
| 10061-01-5 | •                          | 5.0 U  |    | 125   | 114  | 91                  | 112  | 90                    | 2                                       | 83-119/10 |
| 541-73-1   | m-Dichlorobenzene          | 5.0 U  |    | 125   | 121  | 97                  | 122  | 98                    | 1                                       | 86-115/9  |
| 95-50-1    | o-Dichlorobenzene          | 5.0 U  |    | 125   | 118  | 94                  | 119  | 95                    | 1                                       | 85-115/9  |
| 106-46-7   | p-Dichlorobenzene          | 5.0 U  |    | 125   | 118  | 94                  | 119  | 95                    | 1                                       | 87-113/10 |
| 156-60-5   | trans-1,2-Dichloroethylene | 5.0 U  |    | 125   | 132  | 106                 | 131  | 105                   | 1                                       | 82-126/10 |
| 10061-02-6 | trans-1,3-Dichloropropene  | 5.0 U  |    | 125   | 115  | 92                  | 116  | 93                    | 1                                       | 87-123/10 |
| 100-41-4   | Ethylbenzene               | 304    |    | 125   | 436  | 106                 | 438  | 107                   | 0                                       | 87-118/10 |
| 74-83-9    | Methyl bromide             | 10 U   |    | 125   | 101  | 81                  | 100  | 80                    | 1                                       | 55-151/21 |
| 74-87-3    | Methyl chloride            | 10 U   |    | 125   | 117  | 94                  | 115  | 92                    | 2                                       | 55-173/22 |
| 75-09-2    | Methylene chloride         | 10.5   | IV | 125   | 122  | 89                  | 121  | 88                    | 1                                       | 69-125/11 |
| 1634-04-4  | Methyl Tert Butyl Ether    | 5.0 U  |    | 125   | 109  | 87                  | 109  | 87                    | 0                                       | 75-116/10 |
| 71-55-6    | 1,1,1-Trichloroethane      | 5.0 U  |    | 125   | 134  | 107                 | 134  | 107                   | 0                                       | 79-133/11 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 5.0 U  |    | 125   | 115  | 92                  | 118  | 94                    | 3                                       | 71-120/11 |
| 79-00-5    | 1,1,2-Trichloroethane      | 5.0 U  |    | 125   | 133  | 106                 | 134  | 107                   | 1                                       | 80-114/11 |
| 127-18-4   | Tetrachloroethylene        | 5.0 U  |    | 125   | 129  | 103                 | 130  | 104                   | 1                                       | 80-131/12 |
| 108-88-3   | Toluene                    | 1.5    | I  | 125   | 133  | 105                 | 136  | 108                   | 2                                       | 86-116/10 |
| 79-01-6    | Trichloroethylene          | 5.0 U  |    | 125   | 128  | 102                 | 127  | 102                   | 1                                       | 85-124/10 |
| 75-69-4    | Trichlorofluoromethane     | 10 U   |    | 125   | 58.1 | 46*                 | 58.4 | 47*                   | 1                                       | 66-156/15 |
| 75-01-4    | Vinyl chloride             | 5.0 U  |    | 125   | 107  | 86                  | 107  | 86                    | 0                                       | 57-153/22 |
|            |                            |        |    |       |      | 44 Th 4 MO 11 MO 57 |      | and the soft and (19) | 1.0000000000000000000000000000000000000 |           |



# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57467

Page 2 of 2

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

| Sample         File ID         DF           F57465-2MS         J038552.D         5           F57465-2MSD         J038553.D         5           F57465-2         J038551.D         5 | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-----------|------------|------------------|
|                                                                                                                                                                                     | 05/23/08 | KW | n/a       | n/a        | VJ2472           |
|                                                                                                                                                                                     | 05/23/08 | KW | n/a       | n/a        | VJ2472           |
|                                                                                                                                                                                     | 05/23/08 | KW | n/a       | n/a        | VJ2472           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-1

| CAS No.    | Compound              | F57465-2<br>ug/l Q | Spike<br>ug/l | MS<br>ug/l | MS<br>%  | MSD<br>ug/l | MSD<br>% | RPD | Limits<br>Rec/RPD |
|------------|-----------------------|--------------------|---------------|------------|----------|-------------|----------|-----|-------------------|
| 1330-20-7  | Xylene (total)        | 205                | 375           | 605        | 107      | 607         | 107      | 0   | 86-120/10         |
|            |                       |                    |               |            |          |             |          |     |                   |
| CAS No.    | Surrogate Recoveries  | MS                 | MSD           | F57        | 465-2    | Limits      |          |     |                   |
| 1868-53-7  | Dibromofluoromethane  | 98%                | 99%           | 97%        | <b>5</b> | 87-116%     |          |     |                   |
| 17060-07-0 | 1,2-Dichloroethane-D4 | 98%                | 98%           | 95%        | ć        | 76-127%     | )        |     |                   |
| 2037-26-5  | Toluene-D8            | 99%                | 100%          | 1029       | %        | 86-112%     | ,        |     |                   |
| 460-00-4   | 4-Bromofluorobenzene  | 103%               | 102%          | 1069       | %        | 84-120%     |          |     |                   |



Page 1 of 2

Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

| Sample         File ID         DF           657606-1MS         M0027503.D 1           657606-1MSD         M0027504.D 1           657606-1         M0027500.D 1 | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|-----------|------------|------------------|
|                                                                                                                                                                | 05/23/08 | MM | n/a       | n/a        | VM1133           |
|                                                                                                                                                                | 05/23/08 | MM | n/a       | n/a        | VM1133           |
|                                                                                                                                                                | 05/23/08 | MM | n/a       | n/a        | VM1133           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-4, F57467-5, F57467-6, F57467-7

|            |                            | F57606 | 5-1                  | Spike | MS   | MS   | MSD  | MSD  |     | Limits    |
|------------|----------------------------|--------|----------------------|-------|------|------|------|------|-----|-----------|
| CAS No.    | Compound                   | ug/l   | Q                    | ug/l  | ug/l | %    | ug/l | %    | RPD | Rec/RPD   |
| 107-02-8   | Acrolein                   | 20 U   |                      | 125   | 48.9 | 39   | 45.7 | 37   | 7   | 33-157/21 |
| 107-13-1   | Acrylonitrile              | 10 U   |                      | 125   | 120  | 96   | 120  | 96   | 0   | 62-124/13 |
| 71-43-2    | Benzene                    | 1.0 U  |                      | 25    | 28.1 | 112  | 27.8 | 111  | 1   | 83-124/11 |
| 75-27-4    | Bromodichloromethane       | 1.0 U  | •.                   | 25    | 25.4 | 102  | 25.3 | 101  | Ô   | 76-116/10 |
| 75-25-2    | Bromoform                  | 1.0 U  |                      | 25    | 24.3 | 97   | 24.8 | 99   | 2   | 68-128/11 |
| 108-90-7   | Chlorobenzene              | 1.0 U  |                      | 25    | 27.3 | 109  | 27.0 | 108  | 1   | 87-115/9  |
| 75-00-3    | Chloroethane               | 2.0 U  |                      | 25    | 29.6 | 118  | 28.9 | 116  | 2   | 54-166/20 |
| 67-66-3    | Chloroform                 | 1.0 U  |                      | 25    | 28.3 | 113  | 28.0 | 112  | 1   | 85-123/10 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 5.0 U  |                      | 125   | ND   | 0*   | ND   | 0*   | nc  | 63-125/24 |
| 56-23-5    | Carbon tetrachloride       | 1.0 U  |                      | 25    | 31.6 | 126  | 31.1 | 124  | 2   | 74-139/13 |
| 75-34-3    | 1,1-Dichloroethane         | 1.0 U  |                      | 25    | 29.6 | 118  | 29.1 | 116  | 2   | 82-127/10 |
| 75-35-4    | 1,1-Dichloroethylene       | 1.0 U  |                      | 25    | 28.8 | 115  | 28.2 | 113  | 2   | 75-133/13 |
| 107-06-2   | 1,2-Dichloroethane         | 1.0 U  |                      | 25    | 25.7 | 103  | 25.4 | 102  | 1   | 76-122/11 |
| 78-87-5    | 1,2-Dichloropropane        | 1.0 U  |                      | 25    | 26.7 | 107  | 26.7 | 107  | 0   | 81-120/11 |
| 124-48-1   | Dibromochloromethane       | 1.0 U  |                      | 25    | 25.3 | 101  | 26.0 | 104  | 3   | 74-116/11 |
| 75-71-8    | Dichlorodifluoromethane    | 2.0 U  |                      | 25    | 42.6 | 170* | 42.0 | 168* | 1   | 34-158/22 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 9.4    |                      | 25    | 35.3 | 104  | 35.4 | 104  | 0   | 81-114/10 |
| 10061-01-5 | cis-1,3-Dichloropropene    | 1.0 U  |                      | 25    | 27.3 | 109  | 27.4 | 110  | 0   | 83-119/10 |
| 541-73-1   | m-Dichlorobenzene          | 1.0 U  |                      | 25    | 27.6 | 110  | 27.7 | 111  | 0   | 86-115/9  |
| 95-50-1    | o-Dichlorobenzene          | 1.0 U  |                      | 25    | 26.7 | 107  | 27.0 | 108  | 1   | 85-115/9  |
| 106-46-7   | p-Dichlorobenzene          | 1.0 U  |                      | 25    | 27.1 | 108  | 27.2 | 109  | 0   | 87-113/10 |
| 156-60-5   | trans-1,2-Dichloroethylene | 1.0 U  |                      | 25    | 29.7 | 119  | 28.9 | 116  | 3   | 82-126/10 |
| 10061-02-6 | trans-1,3-Dichloropropene  | 1.0 U  |                      | 25    | 28.4 | 114  | 28.7 | 115  | 1   | 87-123/10 |
| 100-41-4   | Ethylbenzene               | 1.0 U  |                      | 25    | 28.3 | 113  | 27.8 | 111  | 2   | 87-118/10 |
| 74-83-9    | Methyl bromide             | 2.0 U  |                      | 25    | 32.5 | 130  | 29.5 | 118  | 10  | 55-151/21 |
| 74-87-3    | Methyl chloride            | 2.0 U  |                      | 25    | 34.0 | 136  | 34.6 | 138  | 2   | 55-173/22 |
| 75-09-2    | Methylene chloride         | 5.0 U  |                      | 25    | 25.4 | 102  | 24.7 | 99   | 3   | 69-125/11 |
| 1634-04-4  | Methyl Tert Butyl Ether    | 1.0 U  |                      | 25    | 22.8 | 91   | 23.3 | 93   | 2   | 75-116/10 |
| 71-55-6    | 1,1,1-Trichloroethane      | 1.0 U  |                      | 25    | 30.4 | 122  | 30.2 | 121  | 1   | 79-133/11 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 1.0 U  |                      | 25    | 25.8 | 103  | 25.9 | 104  | 0   | 71-120/11 |
| 79-00-5    | 1,1,2-Trichloroethane      | 1.0 U  |                      | 25    | 24.6 | 98   | 24.7 | 99   | 0   | 80-114/11 |
| 127-18-4   | Tetrachloroethylene        | 1.0 U  |                      | 25    | 30.2 | 121  | 29.8 | 119  | 1   | 80-131/12 |
| 108-88-3   | Toluene                    | 0.36   | $\mathbf{I}_{\cdot}$ | 25    | 28.6 | 113  | 28.8 | 114  | 1   | 86-116/10 |
| 79-01-6    | Trichloroethylene          | 0.99   | I                    | 25    | 28.9 | 112  | 28.7 | 111  | 1   | 85-124/10 |
| 75-69-4    | Trichlorofluoromethane     | 2.0 U  |                      | 25    | 30.7 | 123  | 30.4 | 122  | 1   | 66-156/15 |
| 75-01-4    | Vinyl chloride             | 1.0 U  |                      | 25    | 30.2 | 121  | 31.2 | 125  | 3   | 57-153/22 |



# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57467

Page 2 of 2

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

| Sample      | File ID DI  | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-------------|----------|----|-----------|------------|------------------|
| F57606-1MS  | M0027503.D1 | 05/23/08 | MM | n/a       | n/a        | VM1133           |
| F57606-1MSD | M0027504.D1 | 05/23/08 | MM | n/a       | n/a        | VM1133           |
| F57606-1    | M0027500.D1 | 05/23/08 | MM | n/a       | n/a        | VM1133           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-4, F57467-5, F57467-6, F57467-7

| CAS No.                                          | Compound                                                                            | F57606-1<br>ug/l Q          | Spike<br>ug/l                | MS<br>ug/l               | MS<br>% | MSD<br>ug/l                              | MSD<br>% | RPD | Limits<br>Rec/RPD |
|--------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------|------------------------------|--------------------------|---------|------------------------------------------|----------|-----|-------------------|
| 1330-20-7                                        | Xylene (total)                                                                      | 3.0 U                       | 75                           | 82.7                     | 110     | 82.4                                     | 110      | 0   | 86-120/10         |
| CAS No.                                          | Surrogate Recoveries                                                                | MS                          | MSD                          | F57                      | 7606-1  | Limits                                   |          |     |                   |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4 | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 101%<br>101%<br>99%<br>102% | 100%<br>101%<br>100%<br>102% | 100<br>100<br>107<br>107 | %<br>%  | 87-116%<br>76-127%<br>86-112%<br>84-120% | ,<br>,   |     |                   |



# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57467

Page 1 of 2

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

| F57492-1 M0027530.D 5 05/24/08 MM n/a n/a VM1134 | Sample<br>F57492-1MS<br>F57492-1MSD<br>F57492-1<br>F57492-1 | File ID DF<br>M0027531.D 5<br>M0027532.D 5<br>M0027527.D 1<br>M0027530.D 5 | Analyzed 05/24/08 05/24/08 05/24/08 05/24/08 | By<br>MM<br>MM<br>MM | Prep Date n/a n/a n/a | Prep Batch<br>n/a<br>n/a<br>n/a | Analytical Batch<br>VM1134<br>VM1134<br>VM1134<br>VM1134 |
|--------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|----------------------|-----------------------|---------------------------------|----------------------------------------------------------|
|--------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|----------------------|-----------------------|---------------------------------|----------------------------------------------------------|

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-2, F57467-3

|            |                            | F57492-1 |   | Spike | MS   | MS            | MSD  | MSD  |                  | Limits    |
|------------|----------------------------|----------|---|-------|------|---------------|------|------|------------------|-----------|
| CAS No.    | Compound                   | ug/1 (   | Ç | ug/l  | ug/1 | %             | ug/l | %    | RPD              | Rec/RPD   |
| 107-02-8   | Acrolein                   | 20 U     |   | 625   | 186  | 30*           | 204  | 33   | 9                | 33-157/21 |
| 107-13-1   | Acrylonitrile              | 10 U     |   | 625   | 612  | 98            | 599  | 96   | 2                | 62-124/13 |
| 71-43-2    | Benzene                    | 2.9      |   | 125   | 132  | 103           | 135  | 106  | 2                | 83-124/11 |
| 75-27-4    | Bromodichloromethane       | 1.0 U    |   | 125   | 121  | 97            | 124  | 99   | 2                | 76-116/10 |
| 75-25-2    | Bromoform                  | 1.0 U    |   | 125   | 110  | 88            | 115  | 92   | 4                | 68-128/11 |
| 108-90-7   | Chlorobenzene              | 170 a    |   | 125   | 314  | 115           | 319  | 119* | 2                | 87-115/9  |
| 75-00-3    | Chloroethane               | 2.0 U    |   | 125   | 142  | 114           | 134  | 107  | 6                | 54-166/20 |
| 67-66-3    | Chloroform                 | 1.0 U    |   | 125   | 132  | 106           | 136  | 109  | 3                | 85-123/10 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 5.0 U    |   | 625   | 34.6 | 6*            | 12.2 | 2*   | 96*              | 63-125/24 |
| 56-23-5    | Carbon tetrachloride       | 1.0 U    |   | 125   | 147  | 118           | 149  | 119  | 1                | 74-139/13 |
| 75-34-3    | 1,1-Dichloroethane         | 1.0 U    |   | 125   | 138  | 110           | 142  | 114  | 3                | 82-127/10 |
| 75-35-4    | 1,1-Dichloroethylene       | 1.0 U    |   | 125   | 139  | 111           | 141  | 113  | 1                | 75-133/13 |
| 107-06-2   | 1,2-Dichloroethane         | 1.0 U    |   | 125   | 120  | 96            | 124  | 99   | 3                | 76-122/11 |
| 78-87-5    | 1,2-Dichloropropane        | 1.0 U    |   | 125   | 126  | 101           | 129  | 103  | 2                | 81-120/11 |
| 124-48-1   | Dibromochloromethane       | 1.0 U    |   | 125   | 114  | 91            | 121  | 97   | 6                | 74-116/11 |
| 75-71-8    | Dichlorodifluoromethane    | 2.0 U    |   | 125   | 160  | 128           | 173  | 138  | 8                | 34-158/22 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 1.0 U    |   | 125   | 120  | 96            | 124  | 99   | 3                | 81-114/10 |
| 10061-01-5 |                            | 1.0 U    |   | 125   | 126  | 101           | 129  | 103  | 2                | 83-119/10 |
| 541-73-1   | m-Dichlorobenzene          | 5.0      |   | 125   | 129  | 99            | 132  | 102  | 2                | 86-115/9  |
| 95-50-1    | o-Dichlorobenzene          | 1.7      |   | 125   | 124  | 98            | 126  | 99   | 2                | 85-115/9  |
| 106-46-7   | p-Dichlorobenzene          | 5.0      |   | 125   | 128  | 98            | 130  | 100  | 2                | 87-113/10 |
| 156-60-5   | trans-1,2-Dichloroethylene | 1.0 U    |   | 125   | 137  | 110           | 143  | 114  | 4                | 82-126/10 |
| 10061-02-6 | trans-1,3-Dichloropropene  | 1.0 U    |   | 125   | 127  | 102           | 129  | 103  | 2                | 87-123/10 |
| 100-41-4   | Ethylbenzene               | 0.20     |   | 125   | 134  | 107           | 136  | 109  | 1                | 87-118/10 |
| 74-83-9    | Methyl bromide             | 2.0 U    |   | 125   | 153  | 122           | 142  | 114  | 7                | 55-151/21 |
| 74-87-3    | Methyl chloride            | 2.0 U    |   | 125   | 147  | 118           | 158  | 126  | 7                | 55-173/22 |
| 75-09-2    | Methylene chloride         | 5.0 U    |   | 125   | 116  | 93            | 118  | 94   | 2                | 69-125/11 |
| 1634-04-4  | Methyl Tert Butyl Ether    | 1.0 U    |   | 125   | 107  | 86            | 113  | 90   | 5                | 75-116/10 |
| 71-55-6    | 1,1,1-Trichloroethane      | 1.0 U    |   | 125   | 145  | 116           | 144  | 115  | 1                | 79-133/11 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 1.0 U    |   | 125   | 117  | 94            | 125  | 100  | 7                | 71-120/11 |
| 79-00-5    | 1,1,2-Trichloroethane      | 1.0 U    |   | 125   | 113  | 90            | 114  | 91   | 1                | 80-114/11 |
| 127-18-4   | Tetrachloroethylene        | 1.0 U    |   | 125   | 136  | 109           | 137  | 110  | 1                | 80-131/12 |
| 108-88-3   | Toluene                    | 1.0 U    |   | 125   | 129  | 103           | 131  | 105  | 2                | 86-116/10 |
| 79-01-6    | Trichloroethylene          | 1.0 U    |   | 125   | 132  | 106           | 129  | 103  | 2                | 85-124/10 |
| 75-69-4    | Trichlorofluoromethane     | 2.0 U    |   | 125   | 144  | 115           | 144  | 115  | 0                | 66-156/15 |
| 75-01-4    | Vinyl chloride             | 1.0 U    |   | 125   | 132  | 106           | 141  | 113  | 7                | 57-153/22 |
|            | J                          |          |   |       |      | 657 ATTOMS 10 |      |      | a success cesses |           |

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57467

Page 2 of 2

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

| Sample      | File ID    | DF  | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|------------|-----|----------|----|-----------|------------|------------------|
| F57492-1MS  | M0027531.E | 5   | 05/24/08 | MM | n/a ¯     | n/a        | VM1134           |
| F57492-1MSD | M0027532.E | 5   | 05/24/08 | MM | n/a       | n/a        | VM1134           |
| F57492-1    | M0027527.E | ) 1 | 05/24/08 | MM | n/a       | n/a        | VM1134           |
| F57492-1    | M0027530.E | ) 5 | 05/24/08 | MM | n/a       | n/a        | VM1134           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-2, F57467-3

| CAS No. Co     | mpound              | F57492-1<br>ug/l Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | MSD<br>ug/l | MSD<br>% | RPD   | Limits<br>Rec/RPD |
|----------------|---------------------|--------------------|---------------|------------|---------|-------------|----------|-------|-------------------|
| 1330-20-7 Xy   | lene (total)        | 3.0 U              | 375           | 375        | 100     | 380         | 101      | 1     | 86-120/10         |
| CAS No. Sur    | rrogate Recoveries  | MS                 | MSD           | F574       | 492-1   | F57492-     | l Li     | mits  |                   |
| 1868-53-7 Dil  | bromofluoromethane  | 100%               | 102%          | 1019       | %       | 98%         | 87       | -116% |                   |
| 17060-07-0 1,2 | 2-Dichloroethane-D4 | 103%               | 102%          | 1029       | %       | 99%         | 76       | -127% |                   |
| 2037-26-5 Tol  | luene-D8            | 97%                | 97%           | 88%        |         | 104%        | 86       | -112% |                   |
| 460-00-4 4-E   | Bromofluorobenzene  | 101%               | 101%          | 1039       | %       | 107%        | 84       | -120% |                   |

(a) Result is from Run #2.



Blank Spike Summary Job Number: F57467

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample File ID DF Analyzed Ву Prep Date Prep Batch Analytical Batch VJ2472-BS J038537.D 1 05/23/08 KW VJ2472 n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-1

|            |                            | Spike | BSP  | BSP             |        |
|------------|----------------------------|-------|------|-----------------|--------|
| CAS No.    | Compound                   | ug/l  | ug/l | %               | Limits |
| 107-02-8   | Acrolein                   | 125   | 56.4 | 45              | 33-157 |
| 107-13-1   | Acrylonitrile              | 125   | 156  | 125*            | 62-124 |
| 71-43-2    | Benzene                    | 25    | 28.1 | 112             | 83-124 |
| 75-27-4    | Bromodichloromethane       | 25    | 25.2 | 101             | 76-116 |
| 75-25-2    | Bromoform                  | 25    | 24.7 | 99              | 68-128 |
| 108-90-7   | Chlorobenzene              | 25    | 26.4 | 106             | 87-115 |
| 75-00-3    | Chloroethane               | 25    | 26.6 | 106             | 54-166 |
| 67-66-3    | Chloroform                 | 25    | 27.3 | 109             | 85-123 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 125   | 118  | 94              | 63-125 |
| 56-23-5    | Carbon tetrachloride       | 25    | 27.7 | 111             | 74-139 |
| 75-34-3    | 1,1-Dichloroethane         | 25    | 28.8 | 115             | 82-127 |
| 75-35-4    | 1,1-Dichloroethylene       | 25    | 27.5 | 110             | 75-133 |
| 107-06-2   | 1,2-Dichloroethane         | 25    | 26.3 | 105             | 76-122 |
| 78-87-5    | 1,2-Dichloropropane        | 25    | 27.2 | 109             | 81-120 |
| 124-48-1   | Dibromochloromethane       | 25    | 25.4 | 102             | 74-116 |
| 75-71-8    | Dichlorodifluoromethane    | 25    | 21.5 | 86              | 34-158 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 25    | 26.6 | 106             | 81-114 |
| 10061-01-5 |                            | 25    | 27.0 | 108             | 83-119 |
| 541-73-1   | m-Dichlorobenzene          | 25    | 26.2 | 105             | 86-115 |
| 95-50-1    | o-Dichlorobenzene          | 25    | 24.9 | 100             | 85-115 |
| 106-46-7   | p-Dichlorobenzene          | 25    | 25.1 | 100             | 87-113 |
| 156-60-5   | trans-1,2-Dichloroethylene | 25    | 27.8 | 111             | 82-126 |
| 10061-02-6 | trans-1,3-Dichloropropene  | 25    | 28.0 | 112             | 87-123 |
| 100-41-4   | Ethylbenzene               | 25    | 27.6 | 110             | 87-118 |
| 74-83-9    | Methyl bromide             | 25    | 26.1 | 104             | 55-151 |
| 74-87-3    | Methyl chloride            | 25    | 24.8 | 99              | 55-173 |
| 75-09-2    | Methylene chloride         | 25    | 25.2 | 101             | 69-125 |
| 1634-04-4  | Methyl Tert Butyl Ether    | 25    | 23.3 | 93              | 75-116 |
| 71-55-6    | 1,1,1-Trichloroethane      | 25    | 28.8 | 115             | 79-133 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 25    | 24.3 | 97              | 71-120 |
| 79-00-5    | 1,1,2-Trichloroethane      | 25    | 25.3 | 101             | 80-114 |
| 127-18-4   | Tetrachloroethylene        | 25    | 26.9 | 108             | 80-131 |
| 108-88-3   | Toluene                    | 25    | 28.1 | 112             | 86-116 |
| 79-01-6    | Trichloroethylene          | 25    | 27.3 | 109             | 85-124 |
| 75-69-4    | Trichlorofluoromethane     | 25    | 27.6 | 110             | 66-156 |
| 75-01-4    | Vinyl chloride             | 25    | 25.2 | 101             | 57-153 |
|            | ·                          |       |      | es tautakoitsiä | :      |



Page 1 of 2

Job Number:

er: F57467

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample VJ2472-BS File ID J038537.D

DF 1 Analyzed 05/23/08

By KW Prep Date n/a

Pı

Prep Batch Analytical Batch

n/a Î

VJ2472

a VJ247

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-1

CAS No.

Compound

Spike ug/l BSP ug/l

BSP Limits

1330-20-7 Xylene (total)

75

85.4

114 86-120

CAS No. Surrogate Recoveries

**BSP** 

100%

100%

Limits

1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4

.

87-116% 76-127%

2037-26-5 460-00-4

Toluene-D8 4-Bromofluorobenzene 101% 102% 86-112% 84-120%

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

Sample DF Analytical Batch File ID Analyzed Ву Prep Date Prep Batch VM1133-BS M0027497.D1 05/23/08 MM n/a n/a VM1133

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-4, F57467-5, F57467-6, F57467-7

|            |                            | Spike | BSP  | BSP              |        |
|------------|----------------------------|-------|------|------------------|--------|
| CAS No.    | Compound                   | ug/l  | ug/l | %                | Limits |
| 107.00.0   |                            | 405   | 45.0 |                  | 00.455 |
| 107-02-8   | Acrolein                   | 125   | 47.2 | 38               | 33-157 |
| 107-13-1   | Acrylonitrile              | 125   | 119  | 95               | 00 101 |
| 71-43-2    | Benzene                    | 25    | 24.7 | 99               | 83-124 |
| 75-27-4    | Bromodichloromethane       | 25    | 24.0 | 96               | 76-116 |
| 75-25-2    | Bromoform                  | 25    | 25.1 | 100              | 68-128 |
| 108-90-7   | Chlorobenzene              | 25    | 25.3 | 101              | 87-115 |
| 75-00-3    | Chloroethane               | 25    | 19.1 | 76               | 54-166 |
| 67-66-3    | Chloroform                 | 25    | 25.8 | 103              | 85-123 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 125   | 117  | 94               | 63-125 |
| 56-23-5    | Carbon tetrachloride       | 25    | 25.7 | 103              | 74-139 |
| 75-34-3    | 1,1-Dichloroethane         | 25    | 25.9 | 104              | 82-127 |
| 75-35-4    | 1,1-Dichloroethylene       | 25    | 20.3 | 81               | 75-133 |
| 107-06-2   | 1,2-Dichloroethane         | 25    | 24.4 | 98               | 76-122 |
| 78-87-5    | 1,2-Dichloropropane        | 25    | 24.3 | 97               | 81-120 |
| 124-48-1   | Dibromochloromethane       | 25    | 26.0 | 104              | 74-116 |
| 75-71-8    | Dichlorodifluoromethane    | 25    | 29.7 | 119              | 34-158 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 25    | 24.1 | 96               | 81-114 |
| 10061-01-5 | cis-1,3-Dichloropropene    | 25    | 25.5 | 102              | 83-119 |
| 541-73-1   | m-Dichlorobenzene          | 25    | 26.2 | 105              | 86-115 |
| 95-50-1    | o-Dichlorobenzene          | 25    | 25.9 | 104              | 85-115 |
| 106-46-7   | p-Dichlorobenzene          | 25    | 25.6 | 102              | 87-113 |
| 156-60-5   | trans-1,2-Dichloroethylene | 25    | 25.2 | 101              | 82-126 |
| 10061-02-6 |                            | 25    | 28.4 | 114              | 87-123 |
| 100-41-4   | Ethylbenzene               | 25    | 24.9 | 100              | 87-118 |
| 74-83-9    | Methyl bromide             | 25    | 19.7 | 79               | 55-151 |
| 74-87-3    | Methyl chloride            | 25    | 27.5 | 110              | 55-173 |
| 75-09-2    | Methylene chloride         | 25    | 24.9 | 100              | 69-125 |
| 1634-04-4  | Methyl Tert Butyl Ether    | 25    | 23.2 | 93               | 75-116 |
| 71-55-6    | 1,1,1-Trichloroethane      | 25    | 25.2 | 101              | 79-133 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 25    | 26.2 | 105              | 71-120 |
| 79-00-5    | 1,1,2-Trichloroethane      | 25    | 24.9 | 100              | 80-114 |
| 127-18-4   | Tetrachloroethylene        | 25    | 26.0 | 104              | 80-131 |
| 108-88-3   | Toluene                    | 25    | 25.9 | 104              | 86-116 |
| 79-01-6    | Trichloroethylene          | 25    | 23.9 | 96               | 85-124 |
| 75-69-4    | Trichlorofluoromethane     | 25    | 19.5 | 78               | 66-156 |
| 75-01-4    | Vinyl chloride             | 25    | 22.3 | 89               | 57-153 |
|            | J                          |       |      | \$67.0740E1-417- |        |



Job Number:

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

| Sample    |  |
|-----------|--|
| VM1133-BS |  |

File ID DF M0027497.D1

Analyzed 05/23/08

Prep Date Ву MM n/a

Prep Batch

**Analytical Batch** 

n/a

VM1133

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-4, F57467-5, F57467-6, F57467-7

| CAS No. | Compound |
|---------|----------|

Spike **BSP** ug/l ug/l

BSP %

Limits

1330-20-7 Xylene (total)

75 75.1 100 86-120

CAS No. Surrogate Recoveries BSP

Limits

1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4

101% 99%

87-116% 76-127%

2037-26-5 460-00-4

Toluene-D8 4-Bromofluorobenzene 103% 105% 86-112% 84-120%

Page 1 of 2

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample VM1134-BS

File ID DF M0027524.D1

Analyzed 05/24/08

Ву MM Prep Date n/a

Prep Batch n/a

**Analytical Batch** 

VM1134

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-2, F57467-3

|            |                            | Spike | BSP  | BSP        |        |
|------------|----------------------------|-------|------|------------|--------|
| CAS No.    | Compound                   | ug/l  | ug/l | %          | Limits |
|            |                            | ug/1  | ug/1 | 70         | Limits |
| 107-02-8   | Acrolein                   | 125   | 45.2 | 36         | 33-157 |
| 107-13-1   | Acrylonitrile              | 125   | 124  | 99         | 62-124 |
| 71-43-2    | Benzene                    | 25    | 26.0 | 104        | 83-124 |
| 75-27-4    | Bromodichloromethane       | 25    | 25.3 | 101        | 76-116 |
| 75-25-2    | Bromoform                  | 25    | 24.8 | 99         | 68-128 |
| 108-90-7   | Chlorobenzene              | 25    | 26.3 | 105        | 87-115 |
| 75-00-3    | Chloroethane               | 25    | 22.3 | 89         | 54-166 |
| 67-66-3    | Chloroform                 | 25    | 26.7 | (1212A)174 | 85-123 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 125   | 123  | 98         | 63-125 |
| 56-23-5    | Carbon tetrachloride       | 25    | 26.4 | 106        | 74-139 |
| 75-34-3    | 1,1-Dichloroethane         | 25    | 27.4 | 110        | 82-127 |
| 75-35-4    | 1,1-Dichloroethylene       | 25    | 24.8 | 99         | 75-133 |
| 107-06-2   | 1,2-Dichloroethane         | 25    | 25.4 | 102        | 76-122 |
| 78-87-5    | 1,2-Dichloropropane        | 25    | 25.8 | 103        | 81-120 |
| 124-48-1   | Dibromochloromethane       | 25    | 25.9 | 104        | 74-116 |
| 75-71-8    | Dichlorodifluoromethane    | 25    | 21.7 | 87         | 34-158 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 25    | 24.6 | 98         | 81-114 |
| 10061-01-5 | cis-1,3-Dichloropropene    | 25    | 26.8 | 107        | 83-119 |
| 541-73-1   | m-Dichlorobenzene          | 25    | 25.9 | 104        | 86-115 |
| 95-50-1    | o-Dichlorobenzene          | 25    | 25.7 | 103        | 85-115 |
| 106-46-7   | p-Dichlorobenzene          | 25    | 25.9 | 104        | 87-113 |
| 156-60-5   | trans-1,2-Dichloroethylene | 25    | 26.2 | 105        | 82-126 |
| 10061-02-6 | trans-1,3-Dichloropropene  | 25    | 28.4 | 114        | 87-123 |
| 100-41-4   | Ethylbenzene               | 25    | 26.0 | 104        | 87-118 |
| 74-83-9    | Methyl bromide             | 25    | 27.4 | 110        | 55-151 |
| 74-87-3    | Methyl chloride            | 25    | 27.9 | 112        | 55-173 |
| 75-09-2    | Methylene chloride         | 25    | 24.2 | 97         | 69-125 |
| 1634-04-4  | Methyl Tert Butyl Ether    | 25    | 23.5 | 94         | 75-116 |
| 71-55-6    | 1,1,1-Trichloroethane      | 25    | 26.6 | 106        | 79-133 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 25    | 25.5 | 102        | 71-120 |
| 79-00-5    | 1,1,2-Trichloroethane      | 25    | 25.3 | 101        | 80-114 |
| 127-18-4   | Tetrachloroethylene        | 25    | 26.2 | 105        | 80-131 |
| 108-88-3   | Toluene                    | 25    | 26.8 | 107        | 86-116 |
| 79-01-6    | Trichloroethylene          | 25    | 25.2 | 101        | 85-124 |
| 75-69-4    | Trichlorofluoromethane     | 25    | 19.1 | 76         | 66-156 |
| 75-01-4    | Vinyl chloride             | 25    | 21.1 | 84         | 57-153 |
|            | -                          |       |      | NASATATOMS |        |



Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample VM1134-BS

File ID

DF M0027524.D1

Analyzed 05/24/08

Ву MM Prep Date n/a

Prep Batch n/a

**Analytical Batch** 

VM1134

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-2, F57467-3

CAS No. Compound Spike ug/l

**BSP** ug/l

BSP % Limits

Xylene (total)

75 76.7 102

86-120

CAS No. Surrogate Recoveries **BSP** 

Limits

Dibromofluoromethane 1868-53-7

17060-07-0 1,2-Dichloroethane-D4 Toluene-D8

101% 102% 102%

76-127% 86-112%

2037-26-5 460-00-4

1330-20-7

4-Bromofluorobenzene

100%

84-120%

87-116%

## Method Blank Summary

Job Number: F57467

Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

Sample File ID DF Analyzed Ву Prep Date Prep Batch **Analytical Batch** VJ2472-MB J038538.D 1 05/23/08 KW n/a n/a VJ2472

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-1

| CAS No.    | Compound                   | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RL  | MDL  | Units Q |
|------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|---------|
| 107-02-8   | Acrolein                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20  | 9.0  | ug/l    |
| 107-13-1   | Acrylonitrile              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10  | 2.0  | ug/l    |
| 71-43-2    | Benzene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 75-27-4    | Bromodichloromethane       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.29 | ug/l    |
| 75-25-2    | Bromoform                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.28 | ug/l    |
| 108-90-7   | Chlorobenzene              | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 75-00-3    | Chloroethane               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 | 0.46 | ug/l    |
| 67-66-3    | Chloroform                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.21 | ug/l    |
| 110-75-8   | 2-Chloroethyl vinyl ether  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0 | 1.2  | ug/l    |
| 56-23-5    | Carbon tetrachloride       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.29 | ug/l    |
| 75-34-3    | 1,1-Dichloroethane         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.25 | ug/l    |
| 75-35-4    | 1,1-Dichloroethylene       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.23 | ug/l    |
| 107-06-2   | 1,2-Dichloroethane         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 78-87-5    | 1,2-Dichloropropane        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.25 | ug/l    |
| 124-48-1   | Dibromochloromethane       | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 75-71-8    | Dichlorodifluoromethane    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 | 1.0  | ug/l    |
| 156-59-2   | cis-1,2-Dichloroethylene   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.28 | ug/l    |
| 10061-01-5 |                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.24 | ug/l    |
| 541-73-1   | m-Dichlorobenzene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.23 | ug/l    |
| 95-50-1    | o-Dichlorobenzene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 106-46-7   | p-Dichlorobenzene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.22 | ug/l    |
| 156-60-5   | trans-1,2-Dichloroethylene | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 10061-02-6 | trans-1,3-Dichloropropene  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.21 | ug/l    |
| 100-41-4   | Ethylbenzene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.20 | ug/l    |
| 74-83-9    | Methyl bromide             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 | 0.54 | ug/l    |
| 74-87-3    | Methyl chloride            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 | 0.38 | ug/l    |
| 75-09-2    | Methylene chloride         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.0 | 1.0  | ug/l    |
| 1634-04-4  | Methyl Tert Butyl Ether    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.25 | ug/l    |
| 71-55-6    | 1,1,1-Trichloroethane      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.29 | ug/l    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.37 | ug/l    |
| 79-00-5    | 1,1,2-Trichloroethane      | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.30 | ug/l    |
| 127-18-4   | Tetrachloroethylene        | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.25 | ug/l    |
| 108-88-3   | Toluene                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.27 | ug/l    |
| 79-01-6    | Trichloroethylene          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.38 | ug/l    |
| 75-69-4    | Trichlorofluoromethane     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.0 | 0.43 | ug/l    |
| 75-01-4    | Vinyl chloride             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.0 | 0.34 | ug/l    |
|            | -                          | and a transfer of the state of |     |      | Ü       |



Page 1 of 2



## Method Blank Summary

Job Number: F57467

Account: **TETRPAPT Tetra Tech NUS** Project: NAS Key West, Key West, FL

Sample File ID DF Analyzed Prep Date Prep Batch Analytical Batch By VJ2472-MB

J038538.D 05/23/08 1 KW VJ2472 n/a n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-1

CAS No. Compound RLMDL Result Units Q

ND 1330-20-7 Xylene (total) 3.0 0.56 ug/l

CAS No. Surrogate Recoveries Limits

Dibromofluoromethane 1868-53-7 97% 87-116% 17060-07-0 1,2-Dichloroethane-D4 97% 76-127% 2037-26-5 Toluene-D8 108% 86-112%

460-00-4 4-Bromofluorobenzene 113% 84-120%





Page 2 of 2

Job Number: F57467

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

DF

| Sample    | File ID  | $\mathbf{D}$ |
|-----------|----------|--------------|
| VM1133-MB | M0027498 | .D1          |

Analyzed 05/23/08

Ву MM Prep Date n/a

Prep Batch n/a

Analytical Batch

VM1133

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-4, F57467-5, F57467-6, F57467-7

| CAS No.    | Compound                   | Result                        | RL      | MDL  | Units Q |
|------------|----------------------------|-------------------------------|---------|------|---------|
| 107-02-8   | Acrolein                   | ND                            | 20      | 9.0  | ug/l    |
| 107-13-1   | Acrylonitrile              | ND                            | 10      | 2.0  | ug/l    |
| 71-43-2    | Benzene                    | ND                            | 1.0     | 0.20 | ug/l    |
| 75-27-4    | Bromodichloromethane       | ND                            | 1.0     | 0:29 | ug/l    |
| 75-25-2    | Bromoform                  | ND                            | 1.0     | 0.28 | ug/l    |
| 108-90-7   | Chlorobenzene              | ND                            | 1.0     | 0.20 | ug/l    |
| 75-00-3    | Chloroethane               | ND                            | 2.0     | 0.46 | ug/l    |
| 67-66-3    | Chloroform                 | ,ND                           | 1.0     | 0.21 | ug/l    |
| 110-75-8   | 2-Chloroethyl vinyl ether  | ND                            | 5.0     | 1.2  | ug/l    |
| 56-23-5    | Carbon tetrachloride       | ND                            | 1.0     | 0.29 | ug/l    |
| 75-34-3    | 1,1-Dichloroethane         | ND                            | 1.0     | 0.25 | ug/l    |
| 75-35-4    | 1,1-Dichloroethylene       | ND                            | 1.0     | 0.23 | ug/l    |
| 107-06-2   | 1,2-Dichloroethane         | ND                            | 1.0     | 0.20 | ug/l    |
| 78-87-5    | 1,2-Dichloropropane        | ND                            | 1.0     | 0.25 | ug/l    |
| 124-48-1   | Dibromochloromethane       | ND                            | 1.0     | 0.20 | ug/l    |
| 75-71-8    | Dichlorodifluoromethane    | ND                            | 2.0     | 1.0  | ug/l    |
| 156-59-2   | cis-1,2-Dichloroethylene   | ND                            | 1.0     | 0.28 | ug/l    |
| 10061-01-5 | cis-1,3-Dichloropropene    | ND                            | 1.0     | 0.24 | ug/l    |
| 541-73-1   | m-Dichlorobenzene          | ND                            | 1.0     | 0.23 | ug/l    |
| 95-50-1    | o-Dichlorobenzene          | ND                            | 1.0     | 0.20 | ug/l    |
| 106-46-7   | p-Dichlorobenzene          | ND                            | 1.0     | 0.22 | ug/l    |
| 156-60-5   | trans-1,2-Dichloroethylene | ND                            | 1.0     | 0.20 | ug/l    |
| 10061-02-6 | trans-1,3-Dichloropropene  | ND                            | 1.0     | 0.21 | ug/l    |
| 100-41-4   | Ethylbenzene               | ND                            | 1.0     | 0.20 | ug/l    |
| 74-83-9    | Methyl bromide             | ND                            | 2.0     | 0.54 | ug/l    |
| 74-87-3    | Methyl chloride            | ND                            | 2.0     | 0.38 | ug/l    |
| 75-09-2    | Methylene chloride         | 1.6                           | 5.0     | 1.0  | ug/l J  |
| 1634-04-4  | Methyl Tert Butyl Ether    | ND                            | 1.0     | 0.25 | ug/l    |
| 71-55-6    | 1,1,1-Trichloroethane      | ND                            | 1.0     | 0.29 | ug/l    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | ND                            | 1.0     | 0.37 | ug/l    |
| 79-00-5    | 1,1,2-Trichloroethane      | ND                            | 1.0     | 0.30 | ug/l    |
| 127-18-4   | Tetrachloroethylene        | ND                            | 1.0     | 0.25 | ug/l    |
| 108-88-3   | Toluene                    | ND                            | 1.0     | 0.27 | ug/l    |
| 79-01-6    | Trichloroethylene          | ND                            | 1.0     | 0.38 | ug/l    |
| 75-69-4    | Trichlorofluoromethane     | ND                            | 2.0     | 0.43 | ug/l    |
| 75-01-4    | Vinyl chloride             | ND                            | 1.0     | 0.34 | ug/l    |
|            | . *                        | authorizations and activities | * ** ** |      |         |



### Method Blank Summary

Job Number: F57467

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample VM1133-MB

File ID DF M0027498.D1

Analyzed 05/23/08

By MM Prep Date n/a

Prep Batch

Analytical Batch

Page 2 of 2

n/a

VM1133

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-4, F57467-5, F57467-6, F57467-7

CAS No. Compound

Result

RL

MDL

Units Q

1330-20-7 Xylene (total)

ND

3.0

0.56

ug/l

CAS No. Surrogate Recoveries

Limits

1868-53-7 Dibromofluoromethane 17060-07-0 1,2-Dichloroethane-D4

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene

99% 87-116%

98% 76-127% 106% 86-112%

110% 84-120%



Page 1 of 2

Job Number: F57467

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

DF

Sample VM1134-MB

File ID M0027525.D1 Analyzed 05/24/08

Ву MM

Prep Date n/a

Prep Batch n/a

Analytical Batch

VM1134

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-2, F57467-3

| CAS No.    | Compound                   | Result                | RL  | MDL  | Units Q |
|------------|----------------------------|-----------------------|-----|------|---------|
| 107-02-8   | Acrolein                   | ND                    | 20  | 9.0  | ug/l    |
| 107-13-1   | Acrylonitrile              | ND                    | 10  | 2.0  | ug/l    |
| 71-43-2    | Benzene                    | ND                    | 1.0 | 0.20 | ug/l    |
| 75-27-4    | Bromodichloromethane       | ND                    | 1.0 | 0.29 | ug/l    |
| 75-25-2    | Bromoform                  | ND                    | 1.0 | 0.28 | ug/l    |
| 108-90-7   | Chlorobenzene              | ND                    | 1.0 | 0.20 | ug/l    |
| 75-00-3    | Chloroethane               | ND                    | 2.0 | 0.46 | ug/l    |
| 67-66-3    | Chloroform                 | ND                    | 1.0 | 0.21 | ug/l    |
| 110-75-8   | 2-Chloroethyl vinyl ether  | ND                    | 5.0 | 1.2  | ug/l    |
| 56-23-5    | Carbon tetrachloride       | ND                    | 1.0 | 0.29 | ug/l    |
| 75-34-3    | 1,1-Dichloroethane         | ND                    | 1.0 | 0.25 | ug/l    |
| 75-35-4    | 1,1-Dichloroethylene       | ND                    | 1.0 | 0.23 | ug/l    |
| 107-06-2   | 1,2-Dichloroethane         | ND                    | 1.0 | 0.20 | ug/l    |
| 78-87-5    | 1,2-Dichloropropane        | ND                    | 1.0 | 0.25 | ug/l    |
| 124-48-1   | Dibromochloromethane       | ND                    | 1.0 | 0.20 | ug/l    |
| 75-71-8    | Dichlorodifluoromethane    | ND                    | 2.0 | 1.0  | ug/l    |
| 156-59-2   | cis-1,2-Dichloroethylene   | ND                    | 1.0 | 0.28 | ug/l    |
| 10061-01-5 | cis-1,3-Dichloropropene    | ND                    | 1.0 | 0.24 | ug/l    |
| 541-73-1   | m-Dichlorobenzene          | ND                    | 1.0 | 0.23 | ug/l    |
| 95-50-1    | o-Dichlorobenzene          | ND                    | 1.0 | 0.20 | ug/l    |
| 106-46-7   | p-Dichlorobenzene          | ND                    | 1.0 | 0.22 | ug/l    |
| 156-60-5   | trans-1,2-Dichloroethylene | ND                    | 1.0 | 0.20 | ug/l    |
| 10061-02-6 | trans-1,3-Dichloropropene  | ND                    | 1.0 | 0.21 | ug/l    |
| 100-41-4   | Ethylbenzene               | ND                    | 1.0 | 0.20 | ug/l    |
| 74-83-9    | Methyl bromide             | ND                    | 2.0 | 0.54 | ug/l    |
| 74-87-3    | Methyl chloride            | ND                    | 2.0 | 0.38 | ug/l    |
| 75-09-2    | Methylene chloride         | ND                    | 5.0 | 1.0  | ug/l    |
| 1634-04-4  | Methyl Tert Butyl Ether    | ND                    | 1.0 | 0.25 | ug/l    |
| 71-55-6    | 1,1,1-Trichloroethane      | ND                    | 1.0 | 0.29 | ug/l    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | ND                    | 1.0 | 0.37 | ug/l    |
| 79-00-5    | 1,1,2-Trichloroethane      | ND                    | 1.0 | 0.30 | ug/l    |
| 127-18-4   | Tetrachloroethylene        | ND                    | 1.0 | 0.25 | ug/l    |
| 108-88-3   | Toluene                    | ND                    | 1.0 | 0.27 | ug/l    |
| 79-01-6    | Trichloroethylene          | ND                    | 1.0 | 0.38 | ug/l    |
| 75-69-4    | Trichlorofluoromethane     | ND                    | 2.0 | 0.43 | ug/l    |
| 75-01-4    | Vinyl chloride             | ND                    | 1.0 | 0.34 | ug/l    |
|            |                            | David Tim And Andria. | 4   |      | o       |





### Method Blank Summary

Job Number: F57467

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample VM1134-MB

File ID M0027525.D1

DF

Analyzed 05/24/08

By Prep Date MM n/a

Prep Batch n/a

Analytical Batch

Page 2 of 2

VM1134

The QC reported here applies to the following samples:

Method: SW846 8260B

F57467-2, F57467-3

CAS No. Compound

Result

RL

MDL

Units Q

1330-20-7 Xylene (total)

ND

3.0

0.56

ug/l

CAS No. Surrogate Recoveries

1868-53-7 Dibromofluoromethane

Limits 101% 87-116%

2037-26-5

17060-07-0 1,2-Dichloroethane-D4

101% 106%

76-127% 86-112%

Toluene-D8 460-00-4 4-Bromofluorobenzene

105%

84-120%

CAS No.

Tentatively Identified Compounds

R.T.

Est. Conc. Units Q

Total TIC, Volatile a

0 ug/l

(a) No TICs detected.





Page 1 of 1

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample: Lab File ID:

VJ2469-BFB J038436.D

Injection Date: 05/20/08

Instrument ID: GCMSJ

Injection Time: 09:49

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative Abundance   | Pass/Fail |
|-----|------------------------------------|------------------|------------------------|-----------|
| 50  | 15.0 - 40.0% of mass 95            | 22669            | 21.0                   | Pass      |
| 75  | 30.0 - 60.0% of mass 95            | 54843            | 50.8                   | Pass      |
| 95  | Base peak, 100% relative abundance | 108053           | 100.0                  | Pass      |
| 96  | 5.0 - 9.0% of mass 95              | 7326             | 6.8                    | Pass      |
| 173 | Less than 2.0% of mass 174         | 503              | $0.47$ $(0.6)^{a}$     | Pass      |
| 174 | 50.0 - 100.0% of mass 95           | 83850            | 77.6                   | Pass      |
| 175 | 5.0 - 9.0% of mass 174             | 6001             | 5.6 (7.2) a            | Pass      |
| 176 | 95.0 - 101.0% of mass 174          | 80992            | 75.0 (96.6)            | a Pass    |
| 177 | 5.0 - 9.0% of mass 176             | 5347             | 4.9 (6.6) <sup>b</sup> | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID        |
|------------------|----------------|------------------|------------------|-----------------|----------------------------|
| VJ2469-ICC2469   | J038438.D      | 05/20/08         | 10:36            | 00:47           | Initial cal 4              |
| VJ2469-IC2469    | J038439.D      | 05/20/08         | 11:05            | 01:16           | Initial cal 1              |
| VJ2469-IC2469    | J038440.D      | 05/20/08         | 11:30            | 01:41           | Initial cal 2              |
| VJ2469-IC2469    | J038441.D      | 05/20/08         | 11:54            | 02:05           | Initial cal 3              |
| VJ2469-IC2469    | J038442.D      | 05/20/08         | 12:19            | 02:30           | Initial cal 5              |
| VJ2469-IC2469    | J038443.D      | 05/20/08         | 12:44            | 02:55           | Initial cal 6              |
| VJ2469-ICV2469   | J038444.D      | 05/20/08         | 13:08            | 03:19           | Initial cal verification 4 |

<sup>(</sup>b) Value is % of mass 176

## **Initial Calibration Summary**

Job Number: F57467

**TETRPAPT Tetra Tech NUS** Account:

NAS Key West, Key West, FL Project:

VI2469-ICC2469 Sample:

I038438.D Lab FileID:

Response Factor Report MSVOA6

Method : C:\MSDCHEM\1\METHODS\8260-J.M (RTE Integrator)

: SW-846 Method 5030B/8260B & EPA 624

Last Update : Tue May 20 13:05:34 2008 Response via : Initial Calibration

Calibration Files

1 =J038439.D 2 =J038440.D 3 =J038441.D =J038438.D

5 =J038442.D 6 =J038443.D

|                                          | Compound                                                                                                                                     | 1                                                                    | 2                                                                    | 3                                                                    | 4                                                                              | 5                                                                    | 6                                                                    | Avg                                                                  | %RSD                                                         |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|
| 1) I 2) 3) P 4) C 5) 6) 7) 8)            | Fluorobenzene Dichlorodifluoromet Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluorometh Ethyl Ether 1,2-Dichlorotrifluo | 0.165<br>0.444<br>0.348<br>0.284<br>0.218<br>0.385<br>0.328<br>0.426 | 0.196<br>0.368<br>0.382<br>0.252<br>0.222<br>0.441<br>0.327<br>0.402 | 0.210<br>0.403<br>0.402<br>0.253<br>0.231<br>0.486<br>0.345<br>0.421 | -ISTD-<br>0.204<br>0.385<br>0.378<br>0.246<br>0.241<br>0.486<br>0.345<br>0.413 | 0.205<br>0.382<br>0.382<br>0.242<br>0.226<br>0.454<br>0.360<br>0.412 | 0.200<br>0.360<br>0.369<br>0.241<br>0.221<br>0.442<br>0.352<br>0.396 | 0.197<br>0.390<br>0.377<br>0.253<br>0.227<br>0.449<br>0.343<br>0.412 | 8.30<br>7.78<br>4.72<br>6.28<br>3.71<br>8.32<br>3.79<br>2.80 |
| 10) C<br>11)                             | 1,1-Dichloroethene<br>Freon 113<br>Linear reg<br>Response Rati                                                                               | 0.434<br>r., Fo                                                      | 0.331<br>rce(0,0                                                     | 0.315                                                                |                                                                                | 0.303                                                                | 0.298                                                                |                                                                      | 6.86<br>15.69                                                |
| 12)<br>13)<br>14)                        | Carbon Disulfide<br>Iodomethane<br>Methylene Chloride<br>Linear reg<br>Response Rati                                                         | 0.461<br>1.221<br>r., Fo                                             | 0.513<br>0.492<br>rce(0,0                                            | 0.566<br>0.428<br>0)                                                 |                                                                                | 0.576<br>0.411                                                       | 0.587<br>0.402                                                       | 0.543                                                                | 2.23<br>8.71<br>58.36                                        |
| 15)                                      | Acetone<br>Quadratic<br>Response Rati                                                                                                        | regr.,                                                               | Force                                                                | (0,0)                                                                |                                                                                | Coeffic                                                              | cient =                                                              | = 0.99                                                               | 14.76<br>97                                                  |
| 16)<br>17)<br>18)<br>19)<br>20)<br>21) P | Methyl acetate<br>trans-1,2-Dichloroe<br>Hexane<br>Methyl Tert Butyl E<br>Di-isopropyl ether<br>1,1-Dichloroethane                           | 0.321<br>0.260<br>0.775<br>0.889                                     | 0.365<br>0.255<br>0.748<br>0.916                                     | 0.409<br>0.278<br>0.804<br>1.036                                     | 0.292                                                                          | 0.407<br>0.267<br>0.850<br>1.065                                     | 0.420<br>0.273<br>0.850<br>1.058                                     | 0.390<br>0.271<br>0.809<br>1.001                                     | 5.83<br>10.13<br>4.94<br>5.13<br>7.70<br>8.72                |
| 22)<br>23)<br>24)<br>25)<br>26)<br>27)   | Acrylonitrile ETBE Vinyl acetate cis-1,2-Dichloroeth 2,2-Dichloropropane Bromochloromethane                                                  | 0.085<br>0.788<br>0.130<br>0.231<br>0.326                            | 0.084<br>0.845<br>0.130<br>0.257<br>0.364                            | 0.083<br>0.934<br>0.131<br>0.284<br>0.391                            | 0.085<br>0.943<br>0.145<br>0.290                                               | 0.086<br>0.976<br>0.134<br>0.294<br>0.386                            | 0.084<br>0.975<br>0.132<br>0.299<br>0.388                            | 0.085<br>0.910<br>0.134<br>0.276<br>0.377                            | 1.42<br>8.42<br>4.20<br>9.56<br>7.47<br>10.51                |
| 28) · 29) C 30)                          | Cyclohexane<br>Chloroform<br>Tetrahydrofuran<br>Linear reg<br>Response Ratio                                                                 | 0.426<br>0.152<br>r., Fo                                             | 0.451<br>0.093<br>cce(0,0                                            | 0.504<br>0.087<br>))                                                 |                                                                                | 0.507<br>0.088                                                       | 0.516<br>0.085                                                       | 0.484                                                                | 11.49<br>7.55<br>26.67                                       |
| 31) S<br>32)<br>33)<br>34)               | Dibromofluoromethan Carbon Tetrachlorid 1,1,1-Trichloroetha 2-Butanone                                                                       | 0.269<br>0.310                                                       | 0.309<br>0.371                                                       | 0.339<br>0.397                                                       | 0.347                                                                          | 0.340<br>0.398                                                       | 0.349<br>0:409                                                       | 0.326<br>0.382                                                       | 1.96<br>9.54<br>9.84<br>4.53                                 |

1,2-Dibromo-3-Chlor 0.184 0.131 0.122 0.134 0.134 0.131 0.140

---- Linear regr., Force (0,0) ---- Coefficient = 0.9994

88)



15.78

Initial Calibration Summary

Job Number: F57467
Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

Sample: Lab FileID:

Page 3 of 3 VJ2469-ICC2469 J038438.D

|                   | Response Ratio = 0.00000 + 0.13222 *A                                                                                                                                                                                                                                              |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89)<br>90)        | Hexachlorobutadiene 0.473 0.321 0.370 0.401 0.383 0.418 0.394 12.88 1,2,4-Trichlorobenz 0.917 0.546 0.635 0.714 0.762 0.797 0.729 17.77 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.64831 *A + 0.07562 *A^2                                      |
| 91)               | Naphthalene 3.196 1.072 1.273 1.460 1.537 1.586 1.687 45.22 Quadratic regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 1.34334 *A + 0.12479 *A^2                                                                                                                  |
| 92)               | 1,2,3-Trichlorobenz 0.827 0.439 0.497 0.558 0.602 0.629 0.592 22.72 Quadratic regr., Force(0,0) Coefficient = 0.9997 Response Ratio = 0.00000 + 0.50737 *A + 0.06196 *A^2                                                                                                          |
| 93) I<br>94)      | Tert Butyl Alcohol-d1ISTD                                                                                                                                                                                                                                                          |
| 95)<br>96)<br>97) | Tert Butyl Alcohol 1.208 1.162 1.090 1.034 1.072 1.118 1.114 5.66 tert Amyl alcohol 0.857 0.871 0.830 0.842 0.901 0.938 0.873 4.61 1,4-Dioxane 0.163 0.098 0.103 0.097 0.114 0.113 0.115 21.76 Linear regr., Force(0,0) Coefficient = 0.9963 Response Ratio = 0.00000 + 0.11160 *A |
| (#) = 0           | ut of Range                                                                                                                                                                                                                                                                        |

8260-J.M

Wed May 21 10:46:40 2008



Page 1 of 1

**TETRPAPT Tetra Tech NUS** Account: Project:

NAS Key West, Key West, FL

Sample: Lab File ID: VJ2472-BFB J038534.D

Injection Date: 05/23/08 Injection Time: 09:11

Instrument ID: GCMSJ

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance |             | Pass/Fail |
|-----|------------------------------------|------------------|-------------------------|-------------|-----------|
| 50  | 15.0 - 40.0% of mass 95            | 22485            | 22.6                    | 56 E 67 E 6 | Pass      |
| 75  | 30.0 - 60.0% of mass 95            | 52394            | 52.6                    |             | Pass      |
| 95  | Base peak, 100% relative abundance | 99557            | 100.0                   |             | Pass      |
| 96  | 5.0 - 9.0% of mass 95              | 7509             | 7.5                     |             | Pass      |
| 173 | Less than 2.0% of mass 174         | 262              | 0.26                    | (0.36) a    | Pass      |
| 174 | 50.0 - 100.0% of mass 95           | 73418            | 73.7                    |             | Pass      |
| 175 | 5.0 - 9.0% of mass 174             | 5230             | 5.3                     | (7.1) a     | Pass      |
| 176 | 95.0 - 101.0% of mass 174          | 71997            | 72.3                    | (98.1) a    | Pass      |
| 177 | 5.0 - 9.0% of mass 176             | 4916             | 4.9                     | (6.8) b     | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab            | Lab       | Date     | Time     | Hours  | Client                                     |
|----------------|-----------|----------|----------|--------|--------------------------------------------|
| Sample ID      | File ID   | Analyzed | Analyzed | Lapsed | Sample ID                                  |
| 1/10/70 000/00 | Innorna D | 05/00/00 | 00.50    | 00.40  |                                            |
| VJ2472-CC2469  | J038536.D | 05/23/08 | 09:59    | 00:48  | Continuing cal 4                           |
| VJ2472-BS      | J038537.D | 05/23/08 | 10:24    | 01:13  | Blank Spike                                |
| VJ2472-MB      | J038538.D | 05/23/08 | 10:48    | 01:37  | Method Blank                               |
| ZZZZZZ         | J038539.D | 05/23/08 | 11:12    | 02:01  | (unrelated sample)                         |
| ZZZZZZ         | J038545.D | 05/23/08 | 13:39    | 04:28  | (unrelated sample)                         |
| ZZZZZZ         | J038546.D | 05/23/08 | 14:04    | 04:53  | (unrelated sample)                         |
| ZZZZZZ         | J038547.D | 05/23/08 | 14:28    | 05:17  | (unrelated sample)                         |
| ZZZZZZ         | J038548.D | 05/23/08 | 14:53    | 05:42  | (unrelated sample)                         |
| ZZZZZZ         | J038549.D | 05/23/08 | 15:17    | 06:06  | (unrelated sample)                         |
| ZZZZZZ         | J038550.D | 05/23/08 | 15:41    | 06:30  | (unrelated sample)                         |
| F57465-2       | J038551.D | 05/23/08 | 16:06    | 06:55  | (used for QC only; not part of job F57467) |
| F57465-2MS     | J038552.D | 05/23/08 | 16:30    | 07:19  | Matrix Spike                               |
| F57465-2MSD    | J038553.D | 05/23/08 | 16:54    | 07:43  | Matrix Spike Duplicate                     |
| ZZZZZZ         | J038554.D | 05/23/08 | 17:19    | 08:08  | (unrelated sample)                         |
| ZZZZZZ         | J038555.D | 05/23/08 | 17:44    | 08:33  | (unrelated sample)                         |
| ZZZZZZ         | J038557.D | 05/23/08 | 18:33    | 09:22  | (unrelated sample)                         |
| ZZZZZZ         | J038558.D | 05/23/08 | 18:57    | 09:46  | (unrelated sample)                         |
| ZZZZZZ         | J038559.D | 05/23/08 | 19:21    | 10:10  | (unrelated sample)                         |
| ZZZZZZ         | J038560.D | 05/23/08 | 19:46    | 10:35  | (unrelated sample)                         |
| ZZZZZZ         | J038561.D | 05/23/08 | 20:10    | 10:59  | (unrelated sample)                         |
| ZZZZZZ         | J038562.D | 05/23/08 | 20:35    | 11:24  | (unrelated sample)                         |
| F57467-1       | J038563.D | 05/23/08 | 20:59    | 11:48  | KWSM-FD-01-0508                            |



<sup>(</sup>b) Value is % of mass 176

## Continuing Calibration Summary Job Number: F57467

Page 1 of 3 Sample:

Job Number: Account:

**TETRPAPT Tetra Tech NUS** 

VJ2472-CC2469

Project:

Method

NAS Key West, Key West, FL

Lab FileID: J038536.D

### Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\052308\J038536.D

Vial: 1

: 23 May 2008 9:59 am Acq On

Operator: karenw Inst : MSVOA6

Sample : CC2469-4 : ms9891,vj2472,,,, Misc

Multiplr: 1.00

MS Integration Params: Tiny.p

: C:\MSDCHEM\1\METHODS\8260-J.M (RTE Integrator)

: SW-846 Method 5030B/8260B & EPA 624

Last Update : Tue May 20 13:05:34 2008 Response via : Multiple Level Calibration

0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Min. RRF

Max. RRF Dev : 20% Max. Rel. Area: 200%

| Compound                            | AvgRF             | CCRF    | %Dev        | Area% | Dev(m        | in)R.T.        |
|-------------------------------------|-------------------|---------|-------------|-------|--------------|----------------|
| 1 I Fluorobenzene                   | 1.000             | 1.000   | 0.0         | 91    | 0.00         | 7.63           |
| 2 Dichlorodifluorome                |                   | 0.215   | -9.1        | 96    | 0.00         | 2.85           |
| 3 P Chloromethane                   | 0.390             | 0.431   | -10.5       | 102   | 0.00         | 3.07           |
| 4 C Vinyl Chloride                  | 0.377             | 0.430   | -14.1       | 104   | 0.00         | 3.20           |
| 5 Bromomethane                      | 0.253             | 0.269   | -6.3        | 100   | 0.00         | 3.60           |
| 6 Chloroethane                      | 0.227             | 0.244   | -7.5        |       | 0.00         | 3.72           |
| 7 Trichlorofluorometh               |                   | 0.498   | -10.9       | 94    | 0.00         | 3.91           |
| 8 Ethyl Ether                       | 0.343             | 0.395   | -15.2       |       | 0.00         | 4.15           |
| 9 1,2-Dichlorotrifluo               |                   | 0.454   | -10.2       |       | 0.00         | 4.40           |
| 10 C 1,1-Dichloroethene             | 0.460             | 0.537   | -16.7       | 100   | 0.00         | 4.43           |
|                                     | Amount            | Calc.   | %Drift      |       |              |                |
| 11 Freon 113                        | 40.000            | 45.259  | -13.1       | 102   | -0.01        | 4.47           |
|                                     |                   |         |             |       |              |                |
|                                     | AvgRF             | CCRF    | %Dev        |       |              |                |
| 12 Carbon Disulfide                 | 1.069             | 1.179   | -10.3       | 100   |              |                |
| 13 Iodomethane                      | 0.543             | 0.579   | -6.6        | 96    | 0.00         | 4.61           |
|                                     | *                 | G 1     | 0.5 1.61    |       |              |                |
|                                     | Amount            |         | %Drift      |       |              |                |
| 14 Methylene Chloride<br>15 Acetone | 40.000<br>200.000 | 42.260  | -5.6<br>4.1 |       | 0.01<br>0.02 | 5.03           |
| 13 Acetone                          | 200.000           | 191.701 | 4.1         | 87    | 0.02         | 5.08           |
|                                     | AvgRF             | CCRF    | %Dev        |       |              |                |
| 16 Methyl acetate                   | 0.046             | 0.047   | -2.2        | 92    | 0.00         | 5.17           |
| 17 trans-1,2-Dichloroe              |                   | 0.428   | -9.7        | 93    | 0.00         | 5.18           |
| 18 Hexane                           | 0.271             | 0.291   | -7.4        | 91    | 0.00         | 5.24           |
| 19 Methyl Tert Butyl F              | Ether 0.809       | 0.840   | -3.8        | 92    | 0.00         | 5.31           |
| 20 Di-isopropyl ether               | 1.001             | 1.107   | -10.6       | 97    | 0.00         | 5.65           |
| 21 P 1,1-Dichloroethane             | 0.478             | 0.527   | -10.3       | 95    | 0.00         | 5.82           |
| 22 Acrylonitrile                    | 0.085             | 0.086   | -1.2        | 92    | 0.00         | 5.88           |
| 23 ETBE                             | 0.910             | 0.984   | -8.1        | 95    | 0.00         | 6.04           |
| 24 Vinyl acetate                    | 0.134             | 0.160   | -19.4       | 101   | 0.01         | 6.04           |
| 25 cis-1,2-Dichloroeth              | nene 0.276        | 0.299   | -8.3        | 94    | 0.00         | 6.37           |
| 26 2,2-Dichloropropane              | 0.377             | 0.419   | -11.1       | 94    | 0.00         | 6.51           |
| 27 Bromochloromethane               | 0.166             | 0.174   | -4.8        | 93    | 0.00         | 6.58           |
| 28 Cyclohexane                      | 0.481             | 0.547   | -13.7       | 96    | 0.00         | 6.62           |
| 29 C Chloroform                     | 0.484             | 0.518   | -7.0        | 95    | 0.00         | 6.63           |
|                                     | _                 |         |             |       |              |                |
|                                     | Amount            |         | %Drift      |       |              |                |
| 30 Tetrahydrofuran                  | 40.000            | 42.142  | -5.4        | 95    | 0.01         | 6.82           |
|                                     | AvgRF             | CCRF    | %Dev        |       |              | <del>-</del> - |



## Continuing Calibration Summary

| 31 S   Dibromofiluoromethane   0.264   0.299   1.9   91   0.00   6.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Conting Job Numb Account: Project: | uing Calibration Summar<br>per: F57467<br>TETRPAPT Tetra Tech NUS<br>NAS Key West, Key West, FL | y         |         | Sample:<br>Lab FileID: | VJ2472-CC2469<br>(D: J038536.D |      | Page 2 of 3 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------|-----------|---------|------------------------|--------------------------------|------|-------------|
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | Dibromofluoromethane                                                                            | 0.264     |         |                        | 91                             | 0.00 | 6.82        |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                                                                 | 0.326     |         | -5.8                   | 91                             | 0.00 | 6.80        |
| 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    | 1,1,1-Trichloroethane                                                                           |           |         |                        |                                |      |             |
| 36   Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 38 S   1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 38 S 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 40 Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                                                                 |           |         |                        |                                |      |             |
| ## Methylcyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 42         Dibromomethane         0.169         0.180         -6.5         94         0.00         8.21           43         C         1,2-Dichloropropane         0.292         0.324         -11.0         97         0.00         8.31           44         Bromodichloromethane         0.372         0.400         -7.5         95         0.00         8.35           45         2-Chlorosthyl vinyl ether         0.176         0.170         3.4         82         0.00         8.96           47         I         Chlorobenzene-d5         1.000         1.000         0.0         96         0.00         10.69           48         S         Toluene         1.426         1.496         -4.9         95         0.00         9.15           50         Z-Nitropropane         0.086         0.100         -16.3         99         0.00         9.21           50         Z-Nitropropane         0.366         0.100         -16.3         99         0.00         9.21           50         Z-Nitropropane         0.376         0.389         -3.5         96         0.00         9.54           51         4.32-Dichloropotane         0.334         0.332         0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 43 C 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                                                                 |           |         |                        |                                |      |             |
| ### Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 46 cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 46 cis-1,3-Dichloropropene 0.451 0.496 -10.0 96 0.00 8.96  47 I Chlorobenzene-d5 1.000 1.000 0.0 96 0.00 10.69  48 S Toluene-d8 1.342 1.313 2.2 93 0.00 9.15  50 2-Nitropropane 0.086 0.100 -16.3 99 0.00 9.21  50 2-Nitropropane 0.536 0.369 -3.5 96 0.00 9.54  51 4-Methyl-2-pentanone 0.376 0.389 -3.5 96 0.00 9.54  52 trans-1,3-Dichloropropene 0.536 0.559 -4.3 94 0.00 9.59  53 Tetrachloroethane 0.285 0.289 -1.4 96 0.00 9.60  54 1,1,2-Tichloroethane 0.356 0.366 -2.8 93 0.00 9.76  55 Dibromochloromethane 0.356 0.366 -2.8 93 0.00 9.94  57 1,2-Dibromoethane 0.320 0.331 -3.4 94 0.00 10.21  58 2-hexanone 0.263 0.262 0.4 92 0.00 10.36  60 C Ethylbenzene 1.630 1.719 -5.5 97 0.00 10.72  61 P Chlorobenzene 0.978 1.009 -3.2 95 0.00 10.76  63 m,p-Xylene 1.195 1.302 -9.0 97 0.00 10.76  64 -Xylene 1.213 1.298 -7.0 95 0.00 11.39  65 Styrene 0.939 0.988 -5.2 93 0.00 11.39  66 P Bromoform 0.227 0.234 -3.1 92 0.00 11.30  67 Isopropylbenzene 1.277 1.403 -9.9 95 0.00 11.60  68 I 1,4-Dichlorobenzene 0.790 0.793 -0.4 96 0.00 12.02  71 Bromobenzene 0.790 0.793 -0.4 96 0.00 12.02  72 P 1,1,2,2-Tetrachloroethane 0.790 0.793 -0.4 94 0.00 12.02  74 P-Chlorobenzene 0.938 0.938 -0.3 96 0.00 11.39  69 S 4-Bromofluorobenzene 0.938 0.938 -0.3 96 0.00 11.30  69 S 4-Bromofluorobenzene 0.935 0.938 -0.3 96 0.00 11.30  69 S 1,3,5-Trimethylbenzene 0.790 0.793 -0.4 94 0.00 12.02  74 P-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.21  75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.21  76 Cyclohexanone 200.000 203.699 -1.8 98 0.00 12.32  77 Cyclohexanone 200.000 203.699 -1.8 98 0.00 12.37  78 4-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.37  79 tetr-Butylbenzene 1.364 1.458 -6.9 94 0.00 12.54  80 1,2,4-Trimethylbenzene 2.416 2.605 -7.8 95 0.00 12.54  81 4-Esopropyltoluene 2.468 2.610 -5.8 97 0.00 12.54  82 4-Esopropyltoluene 2.416 2.605 -7.8 95 0.00 12.61  81 sec-Butylbenzene 3.028 3.259 -7.6 94 0.00 12.73                                                                                                                                                    |                                    |                                                                                                 |           |         |                        |                                |      |             |
| ## S Toluene—d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                 |           |         |                        |                                |      |             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                                                                 |           |         |                        |                                |      |             |
| Solid   Section   Sectio |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 52         trans-1,3-Dichloropropene         0.536         0.559         -4.3         94         0.00         9.59           53         Tetrachloroethene         0.334         0.332         0.6         90         0.00         9.60           54         1,1,2-Trichloroethane         0.285         0.289         -1.4         96         0.00         9.76           55         Dibromochloromethane         0.356         0.366         -2.8         93         0.00         9.94           56         1,3-Dichloropropane         0.573         0.595         -3.8         95         0.00         10.04           57         1,2-Dibromocthane         0.320         0.331         -3.4         94         0.00         10.21           58         2-hexanone         0.263         0.262         0.4         92         0.00         10.36           60         C         Ethylbenzene         1.630         1.719         -5.5         97         0.00         10.72           61         P Chlorobenzene         0.978         1.099         -3.2         95         0.00         10.72           61         P Chlorobenzene         0.326         0.338         -3.7         94         0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | 4-Mothyl-2-poptanone                                                                            |           |         |                        |                                |      |             |
| 53         Tetrachloroethene         0.334         0.332         0.6         90         0.00         9.60           54         1,1,2-Trichloroethane         0.356         0.289         -1.4         96         0.00         9.76           55         Dibromochloromethane         0.356         0.366         -2.8         93         0.00         19.94           56         1,3-Dichloropropane         0.573         0.595         -3.8         95         0.00         10.04           57         1,2-Dibromoethane         0.320         0.331         -3.4         94         0.00         10.21           58         2-hexanone         0.263         0.262         0.4         92         0.00         10.36           59         1-Chlorohexane         0.448         0.492         -9.8         95         0.00         10.65           60         C Ethylbenzene         1.630         1.719         -5.5         97         0.00         10.72           61         P Chlorobenzene         0.978         1.009         -3.2         95         0.00         10.71           62         2,1,1,2,2-Tetrachloroethane         0.326         0.338         -3.7         94         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                 |           |         |                        |                                |      |             |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 1,3-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 57         1,2-Dibromoethane         0.320         0.331         -3.4         94         0.00         10.21           58         2-hexanone         0.263         0.262         0.4         92         0.00         10.36           59         1-Chlorohexane         0.448         0.492         -9.8         95         0.00         10.72           61         P         Chlorobenzene         1.630         1.719         -5.5         97         0.00         10.72           61         P         Chlorobenzene         0.978         1.009         -3.2         95         0.00         10.71           62         1,1,1,2-Tetrachloroethane         0.326         0.338         -3.7         94         0.00         10.76           63         m,p-Xylene         1.195         1.302         -9.0         97         0.00         10.85           64         o-Xylene         1.213         1.298         -7.0         95         0.00         11.29           65         Styrene         0.939         0.988         -5.2         93         0.00         11.39           67         Isopropylbenzene         1.277         1.403         -9.9         95         0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 2-hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 60 C Ethylbenzene 1.630 1.719 -5.5 97 0.00 10.72 61 P Chlorobenzene 0.978 1.009 -3.2 95 0.00 10.71 62 1,1,1,2-Tetrachloroethane 0.326 0.338 -3.7 94 0.00 10.76 63 m,p-Xylene 1.195 1.302 -9.0 97 0.00 10.85 64 0-Xylene 1.213 1.298 -7.0 95 0.00 11.29 65 Styrene 0.939 0.988 -5.2 93 0.00 11.34 66 P Bromoform 0.227 0.234 -3.1 92 0.00 11.39 67 Isopropylbenzene 1.277 1.403 -9.9 95 0.00 11.39 68 I 1,4-Dichlorobenzene-d4 1.000 1.000 0.0 94 0.00 13.05 69 S 4-Bromofluorobenzene 0.935 0.938 -0.3 96 0.00 11.90 0.0 n-Propylbenzene 3.628 3.926 -8.2 96 0.00 12.02 71 Bromobenzene 0.790 0.793 -0.4 94 0.00 12.02 72 P 1,1,2,2-Tetrachloroethane 0.844 0.841 0.4 96 0.00 12.02 73 1,3,5-Trimethylbenzene 2.454 2.639 -7.5 95 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.26 75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26 76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24 79 tett-Butylbenzene 2.020.000 203.699 -1.8 98 0.00 12.32 79 tett-Butylbenzene 1.364 1.458 -6.9 94 0.00 12.54 80 1,2,4-Trimethylbenzene 2.416 2.605 -7.8 95 0.00 12.54 80 1,2,4-Trimethylbenzene 2.416 2.605 -7.8 95 0.00 12.61 81 sec-Butylbenzene 3.028 3.259 -7.6 94 0.00 12.73 82 4-Isopropyltoluene 2.397 2.588 -8.0 93 0.00 12.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 58                                 |                                                                                                 |           |         |                        |                                |      |             |
| 61 P Chlorobenzene 0.978 1.009 -3.2 95 0.00 10.71 1.1,1,2-Tetrachloroethane 0.326 0.338 -3.7 94 0.00 10.76 63 m,p-Xylene 1.195 1.302 -9.0 97 0.00 10.85 64 0-Xylene 1.213 1.298 -7.0 95 0.00 11.29 65 Styrene 0.939 0.988 -5.2 93 0.00 11.34 66 P Bromoform 0.227 0.234 -3.1 92 0.00 11.39 67 Isopropylbenzene 1.277 1.403 -9.9 95 0.00 11.39 68 I 1,4-Dichlorobenzene-d4 1.000 1.000 0.0 94 0.00 13.05 69 S 4-Bromofluorobenzene 0.935 0.938 -0.3 96 0.00 11.90 n-Propylbenzene 3.628 3.926 -8.2 96 0.00 12.02 71 Bromobenzene 0.790 0.793 -0.4 94 0.00 12.02 72 P 1,1,2,2-Tetrachloroethane 0.844 0.841 0.4 96 0.00 12.07 73 1,3,5-Trimethylbenzene 2.454 2.639 -7.5 95 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.20 75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26 76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                                 | 1-Chlorohexane                                                                                  | 0.448     | 0.492   | -9.8                   | 95                             |      |             |
| 62       1,1,1,2-Tetrachloroethane       0.326       0.338       -3.7       94       0.00       10.76         63       m,p-Xylene       1.195       1.302       -9.0       97       0.00       10.85         64       o-Xylene       1.213       1.298       -7.0       95       0.00       11.29         65       Styrene       0.939       0.988       -5.2       93       0.00       11.34         66       P Bromoform       0.227       0.234       -3.1       92       0.00       11.39         67       Isopropylbenzene       1.277       1.403       -9.9       95       0.00       11.39         67       Isopropylbenzene       0.935       0.938       -0.3       96       0.00       11.60         68       I 1,4-Dichlorobenzene       0.935       0.938       -0.3       96       0.00       11.90         70       n-Propylbenzene       3.628       3.926       -8.2       96       0.00       12.02         71       Bromobenzene       0.790       0.793       -0.4       94       0.00       12.02         72       P 1,1,2,2-Tetrachloroethane       0.844       0.841       0.4       96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    | Ethylbenzene                                                                                    | 1.630     | 1.719   | -5.5                   | 97                             | 0.00 | 10.72       |
| 63 m,p-Xylene 1.195 1.302 -9.0 97 0.00 10.85 64 o-Xylene 1.213 1.298 -7.0 95 0.00 11.29 65 Styrene 0.939 0.988 -5.2 93 0.00 11.34 66 P Bromoform 0.227 0.234 -3.1 92 0.00 11.39 67 Isopropylbenzene 1.277 1.403 -9.9 95 0.00 11.39 68 I 1,4-Dichlorobenzene-d4 1.000 1.000 0.0 94 0.00 13.05 69 S 4-Bromofluorobenzene 0.935 0.938 -0.3 96 0.00 11.90 70 n-Propylbenzene 3.628 3.926 -8.2 96 0.00 12.02 71 Bromobenzene 0.790 0.793 -0.4 94 0.00 12.02 72 P 1,1,2,2-Tetrachloroethane 0.844 0.841 0.4 96 0.00 12.07 73 1,3,5-Trimethylbenzene 2.454 2.639 -7.5 95 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.20 75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26 76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24 79 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24 79 1,2,4-Trimethylbenzene 1.364 1.458 -6.9 94 0.00 12.37 79 tert-Butylbenzene 1.364 1.458 -6.9 94 0.00 12.54 80 1,2,4-Trimethylbenzene 2.416 2.605 -7.8 95 0.00 12.73 82 4-Isopropyltoluene 2.397 2.588 -8.0 93 0.00 12.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                                                                                                 |           |         |                        | 95                             | 0.00 | 10.71       |
| 64         o-Xylene         1.213         1.298         -7.0         95         0.00         11.29           65         Styrene         0.939         0.988         -5.2         93         0.00         11.34           66         P Bromoform         0.227         0.234         -3.1         92         0.00         11.39           67         Isopropylbenzene         1.277         1.403         -9.9         95         0.00         11.39           68         I 1,4-Dichlorobenzene-d4         1.000         1.000         0.0         94         0.00         13.05           69         S 4-Bromofluorobenzene         0.935         0.938         -0.3         96         0.00         11.90           70         n-Propylbenzene         3.628         3.926         -8.2         96         0.00         12.02           71         Bromobenzene         0.790         0.793         -0.4         94         0.00         12.02           72         P 1,1,2,2-Tetrachloroethane         0.844         0.841         0.4         96         0.00         12.02           72         P 1,1,2,2-Tetrachloroethane         2.468         2.610         -5.8         97         0.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 65 Styrene 0.939 0.988 -5.2 93 0.00 11.34 66 P Bromoform 0.227 0.234 -3.1 92 0.00 11.39 67 Isopropylbenzene 1.277 1.403 -9.9 95 0.00 11.60 68 I 1,4-Dichlorobenzene-d4 1.000 1.000 0.0 94 0.00 13.05 69 S 4-Bromofluorobenzene 0.935 0.938 -0.3 96 0.00 11.90 70 n-Propylbenzene 3.628 3.926 -8.2 96 0.00 12.02 71 Bromobenzene 0.790 0.793 -0.4 94 0.00 12.02 72 P 1,1,2,2-Tetrachloroethane 0.844 0.841 0.4 96 0.00 12.07 73 1,3,5-Trimethylbenzene 2.454 2.639 -7.5 95 0.00 12.21 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.21 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.20 75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26 76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 66 P         Bromoform         0.227         0.234         -3.1         92         0.00         11.39           67 Isopropylbenzene         1.277         1.403         -9.9         95         0.00         11.60           68 I         1,4-Dichlorobenzene-d4         1.000         1.000         0.0         94         0.00         13.05           69 S         4-Bromofluorobenzene         0.935         0.938         -0.3         96         0.00         11.90           70 n-Propylbenzene         3.628         3.926         -8.2         96         0.00         12.02           71 Bromobenzene         0.790         0.793         -0.4         94         0.00         12.02           72 P 1,1,2,2-Tetrachloroethane         0.844         0.841         0.4         96         0.00         12.02           73 1,3,5-Trimethylbenzene         2.454         2.639         -7.5         95         0.00         12.21           74 2-Chlorotoluene         2.468         2.610         -5.8         97         0.00         12.26           75 trans-1,4-Dichloro-2-Bute         0.199         0.206         -3.5         90         0.00         12.24           76 1,2,3-Trichloropropane         0.236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 67       Isopropylbenzene       1.277       1.403       -9.9       95       0.00       11.60         68 I       1,4-Dichlorobenzene-d4       1.000       1.000       0.0       94       0.00       13.05         69 S       4-Bromofluorobenzene       0.935       0.938       -0.3       96       0.00       11.90         70       n-Propylbenzene       3.628       3.926       -8.2       96       0.00       12.02         71       Bromobenzene       0.790       0.793       -0.4       94       0.00       12.02         72 P       1,1,2,2-Tetrachloroethane       0.844       0.841       0.4       96       0.00       12.07         73       1,3,5-Trimethylbenzene       2.454       2.639       -7.5       95       0.00       12.21         74       2-Chlorotoluene       2.468       2.610       -5.8       97       0.00       12.20         75       trans-1,4-Dichloro-2-Bute       0.199       0.206       -3.5       90       0.00       12.24         76       1,2,3-Trichloropropane       0.236       0.233       1.3       96       0.00       12.32         78       4-Chlorotoluene       2.128       2.236 <td></td> <td><b>-</b></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | <b>-</b>                                                                                        |           |         |                        |                                |      |             |
| 68 I 1,4-Dichlorobenzene-d4 1.000 1.000 0.0 94 0.00 13.05 69 S 4-Bromofluorobenzene 0.935 0.938 -0.3 96 0.00 11.90 70 n-Propylbenzene 3.628 3.926 -8.2 96 0.00 12.02 71 Bromobenzene 0.790 0.793 -0.4 94 0.00 12.02 72 P 1,1,2,2-Tetrachloroethane 0.844 0.841 0.4 96 0.00 12.07 73 1,3,5-Trimethylbenzene 2.454 2.639 -7.5 95 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.21 75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26 76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 69 S       4-Bromofluorobenzene       0.935       0.938       -0.3       96       0.00       11.90         70       n-Propylbenzene       3.628       3.926       -8.2       96       0.00       12.02         71       Bromobenzene       0.790       0.793       -0.4       94       0.00       12.02         72 P       1,1,2,2-Tetrachloroethane       0.844       0.841       0.4       96       0.00       12.07         73       1,3,5-Trimethylbenzene       2.454       2.639       -7.5       95       0.00       12.21         74       2-Chlorotoluene       2.468       2.610       -5.8       97       0.00       12.20         75       trans-1,4-Dichloro-2-Bute       0.199       0.206       -3.5       90       0.00       12.26         76       1,2,3-Trichloropropane       0.236       0.233       1.3       96       0.00       12.24         77       Cyclohexanone       200.000       203.699       -1.8       98       0.00       12.32         78       4-Chlorotoluene       2.128       2.236       -5.1       95       0.00       12.37         79       tert-Butylbenzene       1.364       1.458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60 т                               |                                                                                                 |           |         |                        |                                |      |             |
| 70       n-Propylbenzene       3.628       3.926       -8.2       96       0.00       12.02         71       Bromobenzene       0.790       0.793       -0.4       94       0.00       12.02         72       P       1,1,2,2-Tetrachloroethane       0.844       0.841       0.4       96       0.00       12.07         73       1,3,5-Trimethylbenzene       2.454       2.639       -7.5       95       0.00       12.21         74       2-Chlorotoluene       2.468       2.610       -5.8       97       0.00       12.20         75       trans-1,4-Dichloro-2-Bute       0.199       0.206       -3.5       90       0.00       12.26         76       1,2,3-Trichloropropane       0.236       0.233       1.3       96       0.00       12.24         77       Cyclohexanone       200.000       203.699       -1.8       98       0.00       12.32         78       4-Chlorotoluene       2.128       2.236       -5.1       95       0.00       12.37         79       tert-Butylbenzene       1.364       1.458       -6.9       94       0.00       12.54         80       1,2,4-Trimethylbenzene       2.416 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 71 Bromobenzene 0.790 0.793 -0.4 94 0.00 12.02 72 P 1,1,2,2-Tetrachloroethane 0.844 0.841 0.4 96 0.00 12.07 73 1,3,5-Trimethylbenzene 2.454 2.639 -7.5 95 0.00 12.21 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.20 75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26 76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 72 P       1,1,2,2-Tetrachloroethane       0.844       0.841       0.4       96       0.00       12.07         73 1,3,5-Trimethylbenzene       2.454       2.639       -7.5       95       0.00       12.21         74 2-Chlorotoluene       2.468       2.610       -5.8       97       0.00       12.20         75 trans-1,4-Dichloro-2-Bute       0.199       0.206       -3.5       90       0.00       12.26         76 1,2,3-Trichloropropane       0.236       0.233       1.3       96       0.00       12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 73       1,3,5-Trimethylbenzene       2.454       2.639       -7.5       95       0.00       12.21         74       2-Chlorotoluene       2.468       2.610       -5.8       97       0.00       12.20         75       trans-1,4-Dichloro-2-Bute       0.199       0.206       -3.5       90       0.00       12.26         76       1,2,3-Trichloropropane       0.236       0.233       1.3       96       0.00       12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 74 2-Chlorotoluene 2.468 2.610 -5.8 97 0.00 12.20   75 trans-1,4-Dichloro-2-Bute 0.199 0.206 -3.5 90 0.00 12.26   76 1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 75       trans-1,4-Dichloro-2-Bute 1,2,3-Trichloropropane       0.199 0.206 0.233 0.233 1.3 96 0.00 12.24         76       1,2,3-Trichloropropane 0.236 0.233 1.3 96 0.00 12.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74                                 | <del>-</del>                                                                                    |           |         | -5.8                   |                                |      |             |
| 77 Cyclohexanone 200.000 203.699 -1.8 98 0.00 12.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75                                 | trans-1,4-Dichloro-2-Bute                                                                       | 0.199     |         | -3.5                   | 90                             | 0.00 |             |
| 77 Cyclohexanone 200.000 203.699 -1.8 98 0.00 12.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76                                 | 1,2,3-Trichloropropane                                                                          | 0.236     | 0.233   | 1.3                    | 96.                            | 0.00 | 12.24       |
| AvgRF CCRF %Dev                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                                                                                                 | Amount    | Calc.   | %Drift                 |                                |      |             |
| 78       4-Chlorotoluene       2.128       2.236       -5.1       95       0.00       12.37         79       tert-Butylbenzene       1.364       1.458       -6.9       94       0.00       12.54         80       1,2,4-Trimethylbenzene       2.416       2.605       -7.8       95       0.00       12.61         81       sec-Butylbenzene       3.028       3.259       -7.6       94       0.00       12.73         82       4-Isopropyltoluene       2.397       2.588       -8.0       93       0.00       12.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77                                 | Cyclohexanone                                                                                   | 200.000 2 | 203.699 | -1.8                   | 98                             | 0.00 | 12.32       |
| 79 tert-Butylbenzene 1.364 1.458 -6.9 94 0.00 12.54 80 1,2,4-Trimethylbenzene 2.416 2.605 -7.8 95 0.00 12.61 81 sec-Butylbenzene 3.028 3.259 -7.6 94 0.00 12.73 82 4-Isopropyltoluene 2.397 2.588 -8.0 93 0.00 12.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                 |                                                                                                 | _         |         |                        |                                | 0.00 | 10 07       |
| 80       1,2,4-Trimethylbenzene       2.416       2.605       -7.8       95       0.00       12.61         81       sec-Butylbenzene       3.028       3.259       -7.6       94       0.00       12.73         82       4-Isopropyltoluene       2.397       2.588       -8.0       93       0.00       12.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 81       sec-Butylbenzene       3.028       3.259       -7.6       94       0.00       12.73         82       4-Isopropyltoluene       2.397       2.588       -8.0       93       0.00       12.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 82 4-Isopropyltoluene 2.397 2.588 -8.0 93 0.00 12.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                 |           |         |                        |                                |      |             |
| * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                                                                                                 |           |         |                        |                                |      |             |
| 83 1,3-Dichlorobenzene 1.360 1.376 -1.2 92 0.00 12.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83                                 | 1,3-Dichlorobenzene                                                                             |           | 1.376   | -3.0<br>-1.2           | 92                             | 0.00 | 12.98       |
| 84 1,4-Dichlorobenzene 1.455 1.436 1.3 92 0.00 13.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                                                                                                 |           |         |                        |                                |      |             |



| Contin<br>Job Numb<br>Account:<br>Project: | er: F | Calibration Summary<br>57467<br>ETRPAPT Tetra Tech NUS<br>AS Key West, Key West, FL | 7       |         | Sample:<br>Lab FileID: |    | 472-CC2469<br>8536.D | Page 3 of 3 |
|--------------------------------------------|-------|-------------------------------------------------------------------------------------|---------|---------|------------------------|----|----------------------|-------------|
| 85                                         | n-But | ylbenzene                                                                           | 1.521   | 1.641   | -7.9                   | 94 | 0.00                 | 13.30       |
| 86                                         |       | l Chloride                                                                          | 0.318   | 0.339   | -6.6                   | 88 | 0.00                 | 13.31       |
| 87                                         | 1,2-0 | pichlorobenzene                                                                     | 1.331   | 1.320   | 0.8                    | 92 | 0.00                 | 13.50       |
|                                            | -     |                                                                                     |         |         |                        |    |                      |             |
| 88                                         | 1,2-  | ibromo-3-Chloropropa                                                                | 40.000  | 39.860  | 0.4                    | 92 | 0.00                 | 14.25       |
|                                            | -     |                                                                                     | AvgRF   |         | %Dev                   |    |                      |             |
| 89                                         | Нехас | hlorobutadiene                                                                      | 0.394   | 0.383   | 2.8                    | 90 | 0.00                 | 14.80       |
|                                            | _     |                                                                                     | Amount  |         | %Drift                 |    |                      |             |
| 90                                         |       | -Trichlorobenzene                                                                   | 40.000  |         | 4.3                    | 89 |                      | 14.85       |
| 91                                         |       | halene                                                                              | 40.000  | 38.640  | 3.4                    | 90 | 0.00                 | 15.13       |
| 92                                         | 1,2,3 | -Trichlorobenzene                                                                   | 40.000  | 38.133  | 4.7                    | 89 | 0.00                 | 15.29       |
|                                            | _     | <b>_</b>                                                                            | AvgRF   | CCRF    | %Dev                   |    |                      |             |
| 93 I                                       | Tert  | Butyl Alcohol-d10                                                                   | 1.000   | 1.000   | 0.0                    | 92 | 0.05                 | 5.36        |
|                                            | _     |                                                                                     |         | Calc.   | %Drift                 |    |                      |             |
| 94                                         | acrol | ein                                                                                 | 200.000 | 194.354 | 2.8                    | 92 | -0.01                | 4.75        |
|                                            | -     |                                                                                     | _       | CCRF    | %Dev                   |    |                      |             |
| 95                                         |       | Butyl Alcohol                                                                       | 1.114   |         | 5.1                    |    | 0.04                 |             |
| 96                                         | tert  | Amyl alcohol                                                                        | 0.873   | 0.886   | -1.5                   | 96 | 0.02                 | 7.51        |
|                                            | -     |                                                                                     |         | Calc.   | %Drift                 |    |                      |             |
| 97                                         | 1,4-0 | ioxane                                                                              | 800.000 | 731.193 | 8.6                    | 97 | 0.04                 | 8.61        |

(#) = Out of Range SPCC's out = 0 CCC's out = 0 J038438.D 8260-J.M Tue May 27 11:31:14 2008

Page 1 of 1

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample: Lab File ID:

VM1133-BFB M0027487.D

Injection Date: 05/23/08

Instrument ID: GCMSM

Injection Time: 09:26

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail |
|-----|------------------------------------|------------------|-------------------------|-----------|
| 50  | 15.0 - 40.0% of mass 95            | 23053            | 23.9                    | Pass      |
| 75  | 30.0 - 60.0% of mass 95            | 41040            | 42.6                    | Pass      |
| 95  | Base peak, 100% relative abundance | 96320            | 100.0                   | Pass      |
| 96  | 5.0 - 9.0% of mass 95              | 5982             | 6.2                     | Pass      |
| 173 | Less than 2.0% of mass 174         | 450              | 0.47 (0.48)             | a Pass    |
| 174 | 50.0 - 100.0% of mass 95           | 93448            | 97.0                    | Pass      |
| 175 | 5.0 - 9.0% of mass 174             | 6622             | 6.9 (7.1) <sup>a</sup>  | Pass      |
| 176 | 95.0 - 101.0% of mass 174          | 90104            | 93.5 (96.4)             | a Pass    |
| 177 | 5.0 - 9.0% of mass 176             | 6021             | $6.3 	 (6.7)^{1}$       | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID        |
|------------------|----------------|------------------|------------------|-----------------|----------------------------|
| VM1133-IC113     | 3 M0027488.D   | 05/23/08         | 09:51            | 00:25           | Initial cal 1              |
| VM1133-IC113     | 3 M0027489.D   | 05/23/08         | 10:18            | 00:52           | Initial cal 2              |
| VM1133-IC113     | 3 M0027490.D   | 05/23/08         | 10:44            | 01:18           | Initial cal 3              |
| VM1133-ICC11     | 33 M0027491.D  | 05/23/08         | 11:11            | 01:45           | Initial cal 4              |
| VM1133-IC113     | 3 M0027492.D   | 05/23/08         | 11:38            | 02:12           | Initial cal 5              |
| VM1133-IC113     | 3 M0027493.D   | 05/23/08         | 12:04            | 02:38           | Initial cal 6              |
| VM1133-ICV11     | 33 M0027494.D  | 05/23/08         | 12:41            | 03:15           | Initial cal verification 4 |



<sup>(</sup>b) Value is % of mass 176

Page 1 of 5

VM1133-ICC1133

M0027491.D

### **Initial Calibration Summary**

Job Number: F57467

Account: **TETRPAPT Tetra Tech NUS** Project: NAS Key West, Key West, FL

Response Factor Report MSVOA7

Sample:

Lab FileID:

Method : C:\MSDCHEM\1\METHODS\8260MNEW.M (RTE Integrator)

: SW-846 Method 5030B/8260B & EPA 624

Last Update : Sat May 24 08:57:21 2008

Response via: Initial Calibration

### Calibration Files

- =M0027488.D 2 =M0027489.D 3 =M0027490.D 4 =M0027491.D 1
- =M0027492.D 6 =M0027493.D

3 4 5 6 Compound Ava

- 1) I Fluorobenzene -----ISTD------
- Dichlorodifluoromet 0.071 0.091 0.126 0.147 0.154 0.146 0.123 27.55 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9978Response Ratio =  $0.00000 + 0.14781 *A + -0.00012 *A^2$
- 3) P 0.519 0.460 0.600 0.598 0.566 0.540 0.547 Chloromethane
- 4) C Vinyl Chloride 0.306 0.310 0.464 0.482 0.462 0.452 0.412 19.77 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9996Response Ratio =  $0.00000 + 0.48470 *A + -0.01621 *A^2$
- 5) 0.427 0.286 0.377 0.288 0.216 0.156 0.292 34.29 Bromomethane ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9949 Response Ratio =  $0.00000 + 0.38129 *A + -0.11384 *A^2$
- 0.245 0.242 0.340 0.287 0.231 0.167 0.252 23.04 6) Chloroethane ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9989 Response Ratio =  $0.00000 + 0.37193 *A + -0.10229 *A^2$
- 7) Trichlorofluorometh 0.253 0.294 0.414 0.466 0.455 0.396 0.380 22.92 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9969 Response Ratio =  $0.00000 + 0.50958 *A + -0.05349 *A^2$
- 8) 0.486 0.488 0.531 0.537 0.497 0.433 0.495 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9993 Response Ratio =  $0.00000 + 0.60407 *A + -0.08402 *A^2$
- 9) 1,2-Dichlorotrifluo 0.378 0.372 0.488 0.445 0.420 0.395 0.416 10.68 1,1-Dichloroethene 0.404 0.422 0.608 0.559 0.513 0.480 0.498 15.86 10) C
- ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9994 Response Ratio =  $0.00000 + 0.60749 *A + -0.06433 *A^2$
- 11) Freon 113 0.211 0.226 0.332 0.311 0.305 0.295 0.280 17.67 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9996 Response Ratio =  $0.00000 + 0.32607 *A + -0.01562 *A^2$
- 12) 0.902 0.973 1.373 1.264 1.210 1.148 1.145 15.58 Carbon Disulfide ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9996 Response Ratio =  $0.00000 + 1.35722 *A + -0.10488 *A^2$
- 13) 0.513 0.559 0.716 0.680 0.665 0.659 0.632 12.43 Iodomethane
- 14) Methylene Chloride 0.723 0.526 0.569 0.531 0.526 0.507 0.564 14.33 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9998 Response Ratio =  $0.00000 + 0.56180 *A + -0.02740 *A^2$
- 15) 0.043 0.041 0.044 0.046 0.049 0.044 0.045
- 16) Methyl acetate 0.048 0.050 0.053 0.058 0.055 0.056 0.053

Page 2 of 5

VM1133-ICC1133 M0027491.D

Initial Calibration Summary

Job Number: F57467

Account: TETRPAPT Tetra Tech NUS

Project: NAS Key West, Key West, FL Sample: Lab FileID:

| Troject.                                        | NAS Ney West, Rey West, PL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17)                                             | trans-1,2-Dichloroe 0.272 0.329 0.432 0.405 0.400 0.429 0.378 16.90 Quadratic regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 0.38075 *A + 0.02239 *A^2                                                                                                                                                                                                                                                                                                                                                                                       |
| 18)                                             | Hexane 0.019 0.028 0.058 0.056 0.059 0.065 0.048 40.42 Linear regr., Force(0,0) Coefficient = 0.9947 Response Ratio = 0.00000 + 0.06240 *A                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 19)<br>20)<br>21) P<br>22)<br>23)<br>24)<br>25) | Methyl Tert Butyl E 0.642 0.669 0.733 0.731 0.749 0.769 0.715 6.86 Di-isopropyl ether 1.198 1.240 1.470 1.403 1.372 1.380 1.344 7.69 1,1-Dichloroethane 0.400 0.405 0.523 0.490 0.476 0.502 0.466 11.05 Acrylonitrile 0.153 0.161 0.168 0.166 0.167 0.163 0.163 3.45 ETBE 0.855 0.923 1.070 1.040 1.047 1.099 1.006 9.46 Vinyl acetate 0.770 0.847 0.923 0.880 0.835 0.850 0.851 5.95 cis-1,2-Dichloroeth 0.222 0.230 0.299 0.287 0.282 0.297 0.269 12.77 Quadratic regr., Force(0,0) Coefficient = 0.9992 Response Ratio = 0.00000 + 0.27384 *A + 0.01054 *A^2 |
| 26)                                             | 2,2-Dichloropropane 0.212 0.222 0.297 0.277 0.270 0.289 0.261 13.63 Quadratic regr., Force(0,0) Coefficient = 0.9986 Response Ratio = 0.00000 + 0.26251 *A + 0.01175 *A^2                                                                                                                                                                                                                                                                                                                                                                                       |
| 27)<br>28)                                      | Bromochloromethane 0.142 0.155 0.186 0.178 0.180 0.192 0.172 11.23 Cyclohexane 0.376 0.401 0.601 0.550 0.548 0.588 0.511 19.05 Quadratic regr., Force(0,0) Coefficient = 0.9985 Response Ratio = 0.00000 + 0.51984 *A + 0.03179 *A^2                                                                                                                                                                                                                                                                                                                            |
| 29) C<br>30)<br>31) S<br>32)                    | Chloroform 0.339 0.379 0.456 0.439 0.435 0.463 0.418 11.73 Tetrahydrofuran 0.163 0.151 0.157 0.152 0.150 0.146 0.153 4.07 Dibromofluoromethan 0.238 0.240 0.239 0.240 0.242 0.247 0.241 1.36 Carbon Tetrachlorid 0.184 0.224 0.322 0.298 0.300 0.333 0.277 21.44 Quadratic regr., Force(0,0) Coefficient = 0.9982 Response Ratio = 0.00000 + 0.26951 *A + 0.03005 *A^2                                                                                                                                                                                          |
| 33)                                             | 1,1,1-Trichloroetha 0.203 0.234 0.338 0.312 0.310 0.336 0.289 19.53<br>Quadratic regr., Force(0,0) Coefficient = 0.9983<br>Response Ratio = 0.00000 + 0.28987 *A + 0.02171 *A^2                                                                                                                                                                                                                                                                                                                                                                                 |
| 34)<br>35)                                      | 2-Butanone 0.214 0.220 0.237 0.234 0.237 0.224 0.228 4.35 1,1-Dichloropropene 0.230 0.222 0.334 0.302 0.303 0.330 0.287 17.06 Quadratic regr., Force(0,0) Coefficient = 0.9982 Response Ratio = 0.00000 + 0.28026 *A + 0.02348 *A^2                                                                                                                                                                                                                                                                                                                             |
| 36)                                             | Benzene 0.794 0.892 1.156 1.091 1.068 1.122 1.020 14.12 Quadratic regr., Force(0,0) Coefficient = 0.9991 Response Ratio = 0.00000 + 1.05020 *A + 0.03203 *A^2                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37)<br>38) S<br>39)<br>40)                      | TAME 0.556 0.609 0.711 0.703 0.706 0.724 0.668 10.32 1,2-Dichloroethane- 0.257 0.259 0.262 0.268 0.274 0.255 0.262 2.69 1,2-Dichloroethane 0.309 0.310 0.349 0.334 0.330 0.335 0.328 4.77 Trichloroethene 0.239 0.205 0.285 0.272 0.279 0.309 0.265 14.02 Quadratic regr., Force(0,0) Coefficient = 0.9988 Response Ratio = 0.00000 + 0.24208 *A + 0.03230 *A^2                                                                                                                                                                                                 |
| 41)                                             | Methylcyclohexane 0.258 0.265 0.410 0.391 0.400 0.438 0.360 21.65<br>Quadratic regr., Force(0,0) Coefficient = 0.9989<br>Response Ratio = 0.00000 + 0.35369 *A + 0.04057 *A^2                                                                                                                                                                                                                                                                                                                                                                                   |
| 42)<br>43) C                                    | Dibromomethane 0.117 0.148 0.172 0.171 0.173 0.175 0.159 14.43 1,2-Dichloropropane 0.284 0.289 0.354 0.344 0.336 0.342 0.325 9.39                                                                                                                                                                                                                                                                                                                                                                                                                               |



### **Initial Calibration Summary**

Page 3 of 5 Job Number: F57467 Sample: VM1133-ICC1133 Account: TETRPAPT Tetra Tech NUS Lab FileID: M0027491.D Project: NAS Key West, Key West, FL 44) Bromodichloromethan 0.273 0.299 0.359 0.350 0.349 0.359 0.332 2-Chloroethyl vinyl 0.178 0.223 0.268 0.271 0.280 0.289 0.252 45) ---- Quadratic regr., Force (0,0) ---- Coefficient = 1.0000 Response Ratio =  $0.00000 + 0.25829 *A + 0.00310 *A^2$ 46) cis-1,3-Dichloropro 0.345 0.364 0.452 0.442 0.438 0.449 0.415 11.47 47) T ----TSTD-----Chlorobenzene-d5 48) S Toluene-d8 1.236 1.242 1.176 1.141 1.127 1.107 1.172 4.88 1.046 1.062 1.340 1.265 1.244 1.309 1.211 10.43 49) C Toluene ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9991 Response Ratio =  $0.00000 + 1.21505 *A + 0.04261 *A^2$ 50) 0.094 0.098 0.104 0.104 0.104 0.103 0.101 2-Nitropropane 51) 4-Methyl-2-pentanon 0.477 0.514 0.543 0.524 0.519 0.525 0.517 trans-1,3-Dichlorop 0.332 0.370 0.428 0.421 0.428 0.445 0.404 52) 10.75 53) Tetrachloroethene 0.235 0.252 0.346 0.333 0.343 0.379 0.315 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9990 Response Ratio =  $0.00000 + 0.29701 *A + 0.03953 *A^2$ 54) 1,1,2-Trichloroetha 0.250 0.258 0.274 0.272 0.266 0.272 0.265 3.58 55) Dibromochloromethan 0.246 0.265 0.318 0.322 0.326 0.337 0.302 56) 1,3-Dichloropropane 0.491 0.512 0.553 0.538 0.533 0.540 0.528 4.24 57) 0.267 0.276 0.313 0.313 0.316 0.322 0.301 1,2-Dibromoethane 7.72 0.313 0.354 0.388 0.385 0.388 0.381 0.368 58) 2-hexanone 59) 0.274 0.281 0.424 0.406 0.411 0.448 0.374 20.35 1-Chlorohexane ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9989 Response Ratio =  $0.00000 + 0.36966 *A + 0.03779 *A^2$ 60) C Ethylbenzene 1.238 1.209 1.614 1.521 1.524 1.621 1.455 12.67 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9992Response Ratio =  $0.00000 + 1.43951 *A + 0.08568 *A^2$ 0.728 0.757 0.970 0.943 0.945 0.995 0.890 13.01 61) P Chlorobenzene 62) 1,1,1,2-Tetrachloro 0.225 0.236 0.294 0.293 0.295 0.314 0.276 13.14 m,p-Xylene 63) 0.751 0.833 1.184 1.157 1.162 1.217 1.051 19.34 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9995 Response Ratio =  $0.00000 + 1.09978 *A + 0.02828 *A^2$ 64) o-Xylene 0.763 0.871 1.166 1.130 1.116 1.166 1.035 16.78 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9994Response Ratio =  $0.00000 + 1.08271 *A + 0.03892 *A^2$ 65) Styrene 0.596 0.715 0.955 0.957 0.960 1.015 0.866 19.50 ---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9996 Response Ratio =  $0.00000 + 0.89376 *A + 0.05855 *A^2$ 66) P Bromoform 0.170 0.190 0.231 0.240 0.249 0.259 0.223 15.73 ---- Quadratic regr., Force(0,0) ---- Coefficient = 1.0000Response Ratio =  $0.00000 + 0.22516 *A + 0.01704 *A^2$ 67) 0.765 0.861 1.239 1.187 1.189 1.256 1.083 19.68 Isopropylbenzene ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9993Response Ratio =  $0.00000 + 1.12422 *A + 0.06288 *A^2$ 68) I 1,4-Dichlorobenzene-d ------ISTD-----ISTD-----69) S 4-Bromofluorobenzen 0.825 0.792 0.790 0.782 0.771 0.760 0.786 70) 2.151 2.278 3.230 3.175 3.177 3.413 2.904 18.69 n-Propylbenzene

---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9992



Page 4 of 5

Initial Calibration Summary

Job Number: F57467

Account: TETRPAPT Tetra Tech NUS

Project: NAS Key West, Key West, FL

VM1133-ICC1133 M0027491.D Sample: Lab FileID:

| - |                          | Response Ratio = 0.00000 + 2.92517 *A + 0.23370 *A^2                                                                                                                                                                                                                                                                                                                      |
|---|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 71)<br>72) P<br>73)      | Bromobenzene 0.590 0.632 0.725 0.746 0.750 0.797 0.707 11.12 1,1,2,2-Tetrachloro 0.647 0.720 0.750 0.723 0.687 0.679 0.701 5.23 1,3,5-Trimethylbenz 1.318 1.541 2.176 2.218 2.274 2.378 1.984 22.22 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 2.07881 *A + 0.14812 *A^2                                                                 |
|   | 74)                      | 2-Chlorotoluene 1.459 1.593 2.147 2.140 2.168 2.258 1.961 17.46<br>Quadratic regr., Force(0,0) Coefficient = 0.9998<br>Response Ratio = 0.00000 + 2.03416 *A + 0.10969 *A^2                                                                                                                                                                                               |
|   | 75)<br>76)<br>77)<br>78) | trans-1,4-Dichloro- 0.223 0.234 0.249 0.254 0.250 0.250 0.243 4.95 1,2,3-Trichloroprop 0.154 0.187 0.204 0.207 0.204 0.209 0.194 10.82 Cyclohexanone 0.025 0.024 0.025 0.025 0.025 0.025 0.025 2.42 4-Chlorotoluene 1.328 1.451 1.870 1.847 1.828 1.951 1.712 15.00 Quadratic regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 1.71833 *A + 0.11049 *A^2 |
|   | 79)                      | tert-Butylbenzene 0.733 0.816 1.150 1.112 1.116 1.204 1.022 19.19<br>Quadratic regr., Force(0,0) Coefficient = 0.9991<br>Response Ratio = 0.00000 + 1.02374 *A + 0.08633 *A^2                                                                                                                                                                                             |
|   | 80)                      | 1,2,4-Trimethylbenz 1.454 1.705 2.199 2.161 2.182 2.337 2.006 17.22 Quadratic regr., Force(0,0) Coefficient = 0.9994 Response Ratio = 0.00000 + 1.99807 *A + 0.16336 *A^2                                                                                                                                                                                                 |
|   | 81)                      | sec-Butylbenzene 1.586 1.849 2.745 2.687 2.703 2.879 2.408 22.65 Quadratic regr., Force(0,0) Coefficient = 0.9993 Response Ratio = 0.00000 + 2.50082 *A + 0.18193 *A^2                                                                                                                                                                                                    |
|   | 82)                      | 4-Isopropyltoluene 1.251 1.466 2.188 2.169 2.223 2.373 1.945 23.90 Quadratic regr., Force(0,0) Coefficient = 0.9996 Response Ratio = 0.00000 + 1.99923 *A + 0.18250 *A^2                                                                                                                                                                                                  |
|   | 83)<br>84)<br>85)        | 1,3-Dichlorobenzene 1.074 1.080 1.373 1.337 1.358 1.424 1.274 12.21 1,4-Dichlorobenzene 1.196 1.182 1.426 1.418 1.412 1.471 1.351 9.41 n-Butylbenzene 0.719 0.856 1.287 1.286 1.322 1.428 1.150 25.09 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 1.16345 *A + 0.12930 *A^2                                                               |
|   | 86)                      | Benzyl Chloride 0.195 0.252 0.288 0.298 0.306 0.317 0.276 16.42 Quadratic regr., Force(0,0) Coefficient = 1.0000 Response Ratio = 0.00000 + 0.28212 *A + 0.01735 *A^2                                                                                                                                                                                                     |
|   | 87)<br>88)<br>89)        | 1,2-Dichlorobenzene 1.064 1.079 1.351 1.329 1.330 1.383 1.256 11.49 1,2-Dibromo-3-Chlor 0.080 0.087 0.104 0.109 0.107 0.108 0.099 12.51 Hexachlorobutadiene 0.272 0.267 0.401 0.401 0.406 0.433 0.363 20.27 Quadratic regr., Force(0,0) Coefficient = 0.9995 Response Ratio = 0.00000 + 0.36958 *A + 0.03075 *A^2                                                         |
|   | 90)                      | 1,2,4-Trichlorobenz 0.549 0.639 0.863 0.891 0.905 0.947 0.799 20.49 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 0.83254 *A + 0.05655 *A^2                                                                                                                                                                                                 |
|   | 91)                      | Naphthalene 1.169 1.574 1.960 2.117 2.167 2.223 1.868 22.21 Quadratic regr., Force(0,0) Coefficient = 0.9998 Response Ratio = 0.00000 + 1.99928 *A + 0.11388 *A^2                                                                                                                                                                                                         |
|   | 92)                      | 1,2,3-Trichlorobenz 0.531 0.611 0.785 0.805 0.816 0.848 0.733 17.61                                                                                                                                                                                                                                                                                                       |



Initial Calibration Summary Job Number: F57467

93) I

94)

Account:

NAS Key West, Key West, FL Project:

TETRPAPT Tetra Tech NUS

Sample: VM1133-ICC1133 M0027491.D Lab FileID:

| Quadratic regr., Force(0,0) Coefficient = 0.9999<br>Response Ratio = 0.00000 + 0.76120 *A + 0.04261 *A^2 |
|----------------------------------------------------------------------------------------------------------|
| Tert Butyl Alcohol-dlISTD                                                                                |

95) Tert Butyl Alcohol 1.388 1.253 1.242 1.215 1.187 1.204 1.248 96) tert Amyl alcohol 1.028 1.114 1.115 1.152 1.145 1.164 1.120 97) 1,4-Dioxane 0.065 0.119 0.128 0.123 0.117 0.121 0.112 20.82 ---- Quadratic regr., Force (0,0) ---- Coefficient = 0.9990 Response Ratio =  $0.00000 + 0.12041 *A + -0.00006 *A^2$ 

(#) = Out of Range

8260MNEW.M

Tue May 27 11:05:23 2008

## Instrument Performance Check (BFB) Job Number: F57467

Account: **TETRPAPT Tetra Tech NUS** Project: NAS Key West, Key West, FL

Sample: Lab File ID:

VM1133-BFB M0027495.D

Injection Date: 05/23/08 Injection Time: 13:11

Instrument ID: GCMSM

| m/e        | Ion Abundance Criteria             | Raw<br>Abundance | % Relative Abundance | Pass/Fail |
|------------|------------------------------------|------------------|----------------------|-----------|
| 50         | 15.0 - 40.0% of mass 95            | 28501            | 22.6                 | Pass      |
| <b>7</b> 5 | 30.0 - 60.0% of mass 95            | 53496            | 42.5                 | Pass      |
| 95         | Base peak, 100% relative abundance | 125869           | 100.0                | Pass      |
| 96         | 5.0 - 9.0% of mass 95              | 8423             | 6.7                  | Pass      |
| 173        | Less than 2.0% of mass 174         | 296              | 0.24 (0.25) a        | Pass      |
| 174        | 50.0 - 100.0% of mass 95           | 118976           | 94.5                 | Pass      |
| 175        | 5.0 - 9.0% of mass 174             | 8759             | 7.0 (7.4) a          | Pass      |
| 176        | 95.0 - 101.0% of mass 174          | 118976           | 94.5 (100.0) a       | Pass      |
| 177        | 5.0 - 9.0% of mass 176             | 8090             | 6.4 (6.8) b          | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab        | Date     | Time     | Hours  | Client                                     |
|---------------|------------|----------|----------|--------|--------------------------------------------|
| Sample ID     | File ID    | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|               |            |          |          |        |                                            |
| VM1133-CC1133 | M0027496.D | 05/23/08 | 13:36    | 00:25  | Continuing cal 4                           |
| VM1133-BS     | M0027497.D | 05/23/08 | 14:10    | 00:59  | Blank Spike                                |
| VM1133-MB     | M0027498.D | 05/23/08 | 14:36    | 01:25  | Method Blank                               |
| ZZZZZZ        | M0027499.D | 05/23/08 | 15:03    | 01:52  | (unrelated sample)                         |
| F57606-1      | M0027500.D | 05/23/08 | 15:29    | 02:18  | (used for QC only; not part of job F57467) |
| ZZZZZZ        | M0027501.D | 05/23/08 | 15:56    | 02:45  | (unrelated sample)                         |
| ZZZZZZ        | M0027502.D | 05/23/08 | 16:22    | 03:11  | (unrelated sample)                         |
| F57606-1MS    | M0027503.D | 05/23/08 | 16:49    | 03:38  | Matrix Spike                               |
| F57606-1MSD   | M0027504.D | 05/23/08 | 17:15    | 04:04  | Matrix Spike Duplicate                     |
| ZZZZZZ        | M0027505.D | 05/23/08 | 17:42    | 04:31  | (unrelated sample)                         |
| ZZZZZZ        | M0027506.D | 05/23/08 | 18:08    | 04:57  | (unrelated sample)                         |
| ZZZZZZ        | M0027507.D | 05/23/08 | 18:35    | 05:24  | (unrelated sample)                         |
| ZZZZZZ        | M0027508.D | 05/23/08 | 19:01    | 05:50  | (unrelated sample)                         |
| ZZZZZZ        | M0027509.D | 05/23/08 | 19:27    | 06:16  | (unrelated sample)                         |
| ZZZZZZ        | M0027510.D | 05/23/08 | 19:54    | 06:43  | (unrelated sample)                         |
| ZZZZZZ        | M0027511.D | 05/23/08 | 20:20    | 07:09  | (unrelated sample)                         |
| ZZZZZZ        | M0027512.D | 05/23/08 | 20:47    | 07:36  | (unrelated sample)                         |
| ZZZZZZ        | M0027513.D | 05/23/08 | 21:13    | 08:02  | (unrelated sample)                         |
| ZZZZZZ        | M0027514.D | 05/23/08 | 21:40    | 08:29  | (unrelated sample)                         |
| ZZZZZZ        | M0027515.D | 05/23/08 | 22:07    | 08:56  | (unrelated sample)                         |
| ZZZZZZ        | M0027516.D | 05/23/08 | 22:34    | 09:23  | (unrelated sample)                         |
| F57467-4      | M0027517.D | 05/23/08 | 23:00    | 09:49  | KWSMMW-06-0508                             |
| F57467-5      | M0027518.D | 05/23/08 | 23:26    | 10:15  | KWSMMW-07-0508                             |
| F57467-6      | M0027519.D | 05/23/08 | 23:53    | 10:42  | KWSMMW-08-0508                             |
|               |            |          | •        |        |                                            |



<sup>(</sup>b) Value is % of mass 176

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample: Lab File ID:

VM1133-BFB M0027495.D

Injection Date: 05/23/08

Instrument ID: GCMSM

Injection Time: 13:11

Lab Sample ID

Lab File ID Date Analyzed Time Analyzed Hours Lapsed Client Sample ID

F57467-7

M0027520.D 05/24/08 00:20

11:09

KWSMMW-09D-0508



### Continuing Calibration Summary Job Number: F57467

Account:

Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL Sample:

VM1133-CC1133

Lab FileID:

M0027496.D

#### Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\052308\M0027496.D

Vial: 8

Acq On : 23 May 2008

Operator: MelissaM

Sample

1:36 pm

Inst : MSVOA7

: cc1133-4

: ms9810, vm1133,,,,,

MS Integration Params: Tiny.p

Multiplr: 1.00

: C:\MSDCHEM\1\METHODS\8260MNEW.M (RTE Integrator)

Method

: SW-846 Method 5030B/8260B & EPA 624

Last Update : Sat May 24 08:57:21 2008

Response via : Multiple Level Calibration

Min. RRF :

0.001 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area: 200%

|      | 1                         |                  |         |                      |                        |
|------|---------------------------|------------------|---------|----------------------|------------------------|
|      | Compound                  | AvgRF            | CCRF    | %Dev Area%           | Dev(min)R.T.           |
| 1 I  | Fluorobenzene             | 1.000            | 1.000   | 0.0 126              | 0.00 7.68              |
|      |                           | Amount           | Calc.   | %Drift               |                        |
| 2    | Dichlorodifluoromethane   | 40.000           | 40.132  |                      | 0.00 2.81              |
|      |                           | AvgRF            | CCRF    | %Dev                 |                        |
| 3 P  | Chloromethane             | 0.547            | 0.536   | 2.0 112              | 0.01 3.11              |
|      |                           | Amount           | Calc.   | %Drift               |                        |
| 4 C  | Vinyl Chloride            | 40.000           | 36.983  |                      | 0.01 3.21              |
| 5    | Bromomethane              | 40.000           |         | 28.1# 99             |                        |
| 6    | Chloroethane              | 40.000           |         |                      |                        |
| 7    | Trichlorofluoromethane    | 40.000           | 34.217  | 29.8# 97<br>14.5 109 | 0.02 3.92              |
|      |                           | AvgRF            | CCRF    | %Dev                 |                        |
| 8    | Ethyl Ether               | 0.495            | 0.450   | 9.1 105              | 0.02 4.15              |
| 9    | 1,2-Dichlorotrifluoroetha | 0.416            | 0.425   | -2.2 120             | 0.00 4.39              |
|      |                           | Amount           |         |                      |                        |
| 10 C | 1,1-Dichloroethene        | 40.000<br>40.000 | 37.351  |                      | 0.00 4.41              |
| 11   |                           |                  | 41.866  |                      |                        |
| 12   | Carbon Disulfide          | 40.000           | 39,259  | 1.9 124              | 0.01 4.48              |
|      |                           | AvgRF            | CCRF    | %Dev                 | ·                      |
| 13   | Iodomethane               | 0.632            | 0.696   |                      | 0.00 4.60              |
|      |                           |                  |         |                      |                        |
| 14   | Methylene Chloride        | 40.000           |         | -0.8 129             | 0.01 5.05<br>0.01 5.09 |
| 15   | Acetone                   | 200.000          | 180.314 | 9.8 118              | 0.01 5.09              |
|      |                           | AvaRF            | CCRF    | %Dev                 |                        |
| 16   | Methyl acetate            | 0.053            | 0.050   |                      | 0.00 5.19              |
|      |                           | Amount           | Calc.   | %Drift               |                        |
| 17   | trans-1,2-Dichloroethene  | 40.000           | 42.706  | -6.8 132             | 0.00 5.20              |
| 18   | Hexane                    | 40.000           | 44.310  | -10.8 156            | 0.00 5.24              |
|      |                           | AvgRF            | CCRF    | %Dev                 |                        |
| 19   | Methyl Tert Butyl Ether   | 0.715            | 0.741   |                      |                        |
| 20   | Di-isopropyl ether        | 1.344            | 1.401   |                      | 0.00 5.68              |
| 21 P | 1,1-Dichloroethane        | 0.466            | 0.509   |                      |                        |
| 22   | Acrylonitrile             | 0.163            | 0.149   | 8.6 113              | 0.00 5.93              |



### **Continuing Calibration Summary**

| Job Num Account:   | uing Calibration Summary ber: F57467 TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL | y                                |                                 | Sample:<br>Lab FileID:       |                       | 1133-CC113<br>)27496.D | Page 2 of 4          |
|--------------------|-----------------------------------------------------------------------------------------|----------------------------------|---------------------------------|------------------------------|-----------------------|------------------------|----------------------|
| 23<br>24           | ETBE<br>Vinyl acetate                                                                   | 1.006<br>0.851                   | 1.049<br>0.836                  |                              | 127<br>119            | 0.00                   | 6.07<br>6.08         |
| 25<br>26           | cis-1,2-Dichloroethene<br>2,2-Dichloropropane                                           | Amount<br>40.000<br>40.000       | 42.156                          | -5.4                         | 130                   |                        | 6.42<br>6.55         |
| 27                 | Bromochloromethane                                                                      | AvgRF<br>0.172                   | CCRF<br>0.185                   |                              | 131                   | 0.00                   | 6.63                 |
| 28                 | Cyclohexane                                                                             | Amount<br>40.000                 |                                 |                              |                       | 0.00                   | <br>6.65             |
| 29 C<br>30<br>31 S | Chloroform<br>Tetrahydrofuran<br>Dibromofluoromethane                                   | AvgRF<br>0.418<br>0.153<br>0.241 | CCRF<br>0.456<br>0.133<br>0.245 | -9.1<br>13.1                 | 131<br>110<br>128     |                        | 6.68<br>6.86<br>6.87 |
| 32<br>33           | Carbon Tetrachloride 1,1,1-Trichloroethane                                              | 40.000                           | 44.925<br>43.414                | -12.3                        | 140<br>135            |                        | 6.85<br>6.93         |
| · 34               | 2-Butanone                                                                              | AvgRF<br>0.228                   |                                 |                              | 113                   | 0.00                   | 6.99                 |
| 35<br>36           | 1,1-Dichloropropene<br>Benzene                                                          |                                  |                                 | -9.5                         | 137<br>130            |                        | 7.03<br>7.28         |
| 37<br>38 S<br>39   | TAME 1,2-Dichloroethane-d4 1,2-Dichloroethane                                           | AvgRF<br>0.668<br>0.262<br>0.328 | CCRF<br>0.698<br>0.266<br>0.334 | %Dev<br>-4.5<br>-1.5<br>-1.8 | 125<br>125            | 0.00                   | 7.36<br>7.42<br>7.49 |
| 40<br>41           | Trichloroethene<br>Methylcyclohexane                                                    | Amount<br>40.000<br>40.000       | 42.390                          | -6.0                         | 132<br>138            | 0.00                   | 7.84<br>7.85         |
| 42<br>43 C<br>44   | Dibromomethane<br>1,2-Dichloropropane<br>Bromodichloromethane                           | AvgRF<br>0.159<br>0.325<br>0.332 |                                 | -5.7<br>-4.6                 | 124                   | 0.00<br>0.00<br>0.00   | 8.28<br>8.37<br>8.41 |
| 45                 | 2-Chloroethyl vinyl ether                                                               | Amount<br>200.000 1              | Calc.<br>187.915                | %Drift<br>6.0                | 118                   | 0.00                   | <br>8 <b>.</b> 93    |
| 46                 | cis-1,3-Dichloropropene                                                                 | AvgRF<br>0.415                   | CCRF<br>0.447                   | %Dev<br>-7.7                 | <br>127               | 0.00                   | 9.02                 |
| 47 I<br>48 S       | Chlorobenzene-d5<br>Toluene-d8                                                          | 1.000<br>1.172                   | 1.000<br>1.184                  |                              | 120<br>124            |                        | 10.75<br>9.21        |
| 49 C               | Toluene                                                                                 | Amount<br>40.000                 | Calc.<br>43.438                 |                              | 128                   | 0.00                   | 9.26                 |
| 50<br>51<br>52     | 2-Nitropropane<br>4-Methyl-2-pentanone<br>trans-1,3-Dichloropropene                     | 0.101<br>0.517                   | CCRF<br>0.099<br>0.477<br>0.440 | 7.7                          | <br>114<br>109<br>125 |                        | 9.50<br>9.61<br>9.66 |



Page 3 of 4

# Continuing Calibration Summary Job Number: F57467 Account: TETRPAPT Tetra Tech NUS Project: NAS Key West, Key West, FL

| Job | Number: | _ |
|-----|---------|---|
| Acc | ount.   |   |

Sample: Lab FileID:

VM1133-CC1133 M0027496.D

| Project: | NAS Key West, Key West, FL              |                  |                  |                 |            |              |                |
|----------|-----------------------------------------|------------------|------------------|-----------------|------------|--------------|----------------|
|          |                                         | Amount           | Calc.            | %Drift          |            |              |                |
| 53       | Tetrachloroethene                       | 40.000           | 44.346           | -10.9           | 132        | 0.00         | 9.64           |
|          |                                         | AvgRF            | CCRF             | %Dev            |            |              |                |
| 54       | 1,1,2-Trichloroethane                   | 0.265            | 0.271            | -2.3            | 119        | 0.00         | 9.82           |
| 55       | Dibromochloromethane                    | 0.302            | 0.337            | -11.6           | 125        | 0.00         | 10.01          |
| 56       | 1,3-Dichloropropane                     | 0.528            | 0.544            | -3.0            | 121        | 0.00         | 10.10          |
| 57       | 1,2-Dibromoethane                       | 0.301            | 0.317            | -5.3            | 121        | 0.00         | 10.27          |
| 58       | 2-hexanone                              | 0.368            | 0.353            | 4.1             | 109        | 0.00         | 10.42          |
| 59       |                                         | Amount           |                  | %Drift<br>-13.1 |            |              | 10.70          |
| 60 C     | 1-Chlorohexane<br>Ethylbenzene          | 40.000<br>40.000 | 45.247           | -13.1<br>-6.0   | 135<br>126 | 0.00         | 10.70          |
|          | Echylbenzene                            | 40.000           | 42.385           | -0.0            | 120        | 0.00         | 10.76          |
| 61 D     |                                         | *** 9***         | CCRF             | %Dev            |            |              |                |
| 61 P     | Chlorobenzene                           | 0.890            | 0.970            | -9.0            | 123        | 0.00         | 10.77          |
| 62       | 1,1,1,2-Tetrachloroethane               | 0.276            | 0.310            | -12.3           | 127        | 0.00         | 10.82          |
| 62       | Well-re-                                | Amount           |                  | %Drift          |            |              |                |
| 63<br>64 | m,p-Xylene                              | 80.000<br>40.000 | 84.034           | -5.0            | 124        | 0.00         | 10.90          |
| 65       | o-Xylene<br>Styrene                     | 40.000           | 42.567<br>41.691 | -6.4<br>-4.2    | 126<br>123 | 0.00<br>0.00 | 11.35<br>11.40 |
| 66 P     | Bromoform                               | 40.000           | 40.293           |                 | 120        | 0.00         | 11.45          |
| 67       | Isopropylbenzene                        | 40.000           | 42.684           | -6.7            | 127        | 0.00         | 11.45          |
|          | 100p10p11001120110                      | 10.000           | 12:001           |                 | 121        |              | 11.00          |
|          |                                         | - AvgRF          | CCRF             | %Dev            |            |              |                |
| 68 I     | 1,4-Dichlorobenzene-d4                  | 1.000            | 1.000            | 0.0             | 117        | 0.00         | 13.11          |
| 69 S     | 4-Bromofluorobenzene                    | 0.786            | 0.808            | -2.8            | 121        | 0.00         | 11.96          |
|          |                                         | - Amount         | Calc.            | %Drift          |            |              |                |
| 70       | n-Propylbenzene                         | 40.000           | 43.314           | -8.3            | 125        | 0.00         | 12.07          |
|          |                                         | - AvgRF          | CCRF             | %Dev            |            |              | <del>-</del>   |
| 71       | Bromobenzene                            | 0.707            | 0.776            | -9.8            | 121        | 0.00         | 12.08          |
| 72 P     | 1,1,2,2-Tetrachloroethane               | 0.701            | 0.688            | 1.9             | 111        | 0.00         | 12.15          |
|          |                                         | - Amount         |                  | %Drift          |            |              |                |
| 73       | 1,3,5-Trimethylbenzene                  | 40.000           | 42.460           | -6.2            | 123        | 0.00         | 12.25          |
| 74       | 2-Chlorotoluene                         | 40.000           | 42.364           | -5.9            | 123        | 0.00         | 12.25          |
| 7.5      |                                         | - AvgRF          | CCRF             | %Dev            |            |              |                |
| 75       | trans-1,4-Dichloro-2-Bute               | 0.243            | 0.245            | -0.8            | 113        | 0.00         | 12.33          |
| 76       | 1,2,3-Trichloropropane                  | 0.194            | 0.196            | -1.0            | 111        | 0.00         | 12.30          |
| 77       | Cyclohexanone                           | 0.025            | 0.022            | 12.0            | 102        | 0.00         | 12.38          |
| 7.0      | 4 611                                   |                  | Calc.            | %Drift          |            |              |                |
| 78<br>70 | 4-Chlorotoluene                         | 40.000           | 43.346           | -8.4            | 124        | 0.00         | 12.42          |
| 79       | tert-Butylbenzene                       | 40.000           | 43.316           | -8.3            | 125        | 0.00         | 12.60          |
| 80<br>91 | 1,2,4-Trimethylbenzene sec-Butylbenzene |                  | 42.958           | -7.4            | 124        | 0.00         | 12.66          |
| 81<br>82 | 4-Isopropyltoluene                      | 40.000<br>40.000 | 42.973<br>43.120 | -7.4<br>-7.8    | 124<br>125 | 0.00         | 12.78          |
| 02       |                                         |                  |                  |                 | 123        | 0.00         | 12.91          |
| 0.0      | 1. 2. På ala la mala annana             |                  | CCRF             | %Dev            |            |              |                |
| 83       | 1,3-Dichlorobenzene                     | 1.274            | 1.402            | -10.0           | 122        | 0.00         | 13.04          |
| 84       | 1,4-Dichlorobenzene                     | 1.351            | 1.458            | -7.9            | 120        | 0.00         | 13.13          |
| o F      |                                         |                  | Calc.            | %Drift          |            |              |                |
| 85       | n-Butylbenzene                          | 40.000           | 42.979           | -7.4            | 124        | 0.00         | 13.35          |
| 86       | Benzyl Chloride                         | 40.000           | 43.445           | -8.6            | 126        | 0.00         | 13.37          |

#### Continuing Calibration Summary

| Job Numi<br>Account: | uing Calibration Summary<br>ber: F57467<br>TETRPAPT Tetra Tech NUS<br>NAS Key West, Key West, FL | ,        |        | Sample:<br>Lab FileID: |     | 1133-CC11<br>027496.D | Page 4 of 4 |
|----------------------|--------------------------------------------------------------------------------------------------|----------|--------|------------------------|-----|-----------------------|-------------|
|                      |                                                                                                  |          |        |                        |     |                       |             |
| 0.5                  |                                                                                                  | _        | CCRF   | %Dev                   |     |                       |             |
| 87                   | 1,2-Dichlorobenzene                                                                              | 1.256    |        |                        |     | 0.00                  |             |
| 88                   | 1,2-Dibromo-3-Chloropropa                                                                        | 0.099    | 0.095  | 4.0                    | 102 | 0.00                  | 14.30       |
|                      |                                                                                                  | - Amount | Calc.  | %Drift                 |     |                       |             |
| 89 .                 | Hexachlorobutadiene                                                                              | 40.000   | 43.597 | -9.0                   | 126 | 0.00                  | 14.84       |
| 90                   | 1,2,4-Trichlorobenzene                                                                           | 40.000   | 40.877 | -2.2                   | 118 | 0.00                  | 14.89       |
| 91                   | Naphthalene                                                                                      | 40.000   | 38.026 | 4.9                    | 109 | 0.00                  | 15.18       |
| 92                   | 1,2,3-Trichlorobenzene                                                                           | 40.000   | 40.098 | -0.2                   | 116 | 0.00                  | 15.35       |
|                      |                                                                                                  |          |        |                        |     |                       | •           |
|                      |                                                                                                  |          | CCRF   |                        |     | <b></b>               |             |
| 93 I                 | Tert Butyl Alcohol-d10                                                                           | 1.000    | 1.000  | 0.0                    | 115 | 0.02                  | 5.33        |
|                      |                                                                                                  | - Amount | Calc.  | %Drift                 |     |                       |             |
| 94                   |                                                                                                  |          |        | 13.0                   | 103 | 0.02                  | 4.78        |
|                      | · · · · · · · · · · · · · · · · · · ·                                                            | - AvaRF  | CCRF   | %Dev                   |     |                       |             |
| 95                   |                                                                                                  | 1.248    |        |                        | 113 | 0.00                  | 5.40        |
| 96                   | tert Amyl alcohol                                                                                | 1.120    | 1.114  |                        |     |                       | 7.53        |
|                      |                                                                                                  | - Amount | Calc.  | %Drift                 |     |                       |             |
| 97                   | 1,4-Dioxane                                                                                      |          |        |                        | 117 | 0.00                  | 8.60        |

(#) = Out of Range SPCC's out = 0 CCC's out = 0 M0027491.D 8260MNEW.M Tue May 27 11:04:49 2008

#### Instrument Performance Check (BFB)

Job Number: F57467

Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

Sample: Lab File ID: VM1134-BFB M0027522.D Injection Date: 05/24/08 Injection Time: 08:16

Instrument ID: GCMSM

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail |
|-----|------------------------------------|------------------|-------------------------|-----------|
| 50  | 15.0 - 40.0% of mass 95            | 23538            | 25.2                    | Pass      |
| 75  | 30.0 - 60.0% of mass 95            | 41546            | 44.5                    | Pass      |
| 95  | Base peak, 100% relative abundance | 93357            | 100.0                   | Pass      |
| 96  | 5.0 - 9.0% of mass 95              | 6098             | 6.5                     | Pass      |
| 173 | Less than 2.0% of mass 174         | 284              | 0.3 (0.31) a            | Pass      |
| 174 | 50.0 - 100.0% of mass 95           | 92226            | 98.8                    | Pass      |
| 175 | 5.0 - 9.0% of mass 174             | 6564             | 7.0 (7.1) a             | Pass      |
| 176 | 95.0 - 101.0% of mass 174          | 88642            | 94.9 (96.1) a           | Pass      |
| 177 | 5.0 - 9.0% of mass 176             | 6259             | 6.7 (7.1) b             | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab        | Date     | Time     | Hours  | Client                                     |
|---------------|------------|----------|----------|--------|--------------------------------------------|
| Sample ID     | File ID    | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|               |            |          |          |        |                                            |
| VM1134-CC1133 | M0027523.D | 05/24/08 | 08:42    | 00:26  | Continuing cal 4                           |
| VM1134-BS     | M0027524.D | 05/24/08 | 09:11    | 00:55  | Blank Spike                                |
| VM1134-MB     | M0027525.D | 05/24/08 | 09:38    | 01:22  | Method Blank                               |
| ZZZZZZ        | M0027526.D | 05/24/08 | 10:04    | 01:48  | (unrelated sample)                         |
| F57492-1      | M0027527.D | 05/24/08 | 10:31    | 02:15  | (used for QC only; not part of job F57467) |
| ZZZZZZ        | M0027528.D | 05/24/08 | 11:00    | 02:44  | (unrelated sample)                         |
| ZZZZZZ        | M0027529.D | 05/24/08 | 11:27    | 03:11  | (unrelated sample)                         |
| F57492-1      | M0027530.D | 05/24/08 | 11:53    | 03:37  | (used for QC only; not part of job F57467) |
| F57492-1MS    | M0027531.D | 05/24/08 | 12:19    | 04:03  | Matrix Spike                               |
| F57492-1MSD   | M0027532.D | 05/24/08 | 12:46    | 04:30  | Matrix Spike Duplicate                     |
| F57467-2      | M0027533.D | 05/24/08 | 13:13    | 04:57  | KWSMMW-04-0508                             |
| F57467-3      | M0027534.D | 05/24/08 | 13:39    | 05:23  | KWSMMW-05-0508                             |
| ZZZZZZ        | M0027535.D | 05/24/08 | 14:06    | 05:50  | (unrelated sample)                         |
| ZZZZZZ        | M0027536.D | 05/24/08 | 14:32    | 06:16  | (unrelated sample)                         |
| ZZZZZZ        | M0027537.D | 05/24/08 | 14:58    | 06:42  | (unrelated sample)                         |
| ZZZZZZ        | M0027538.D | 05/24/08 | 15:25    | 07:09  | (unrelated sample)                         |
| ZZZZZZ        | M0027539.D | 05/24/08 | 15:52    | 07:36  | (unrelated sample)                         |
| ZZZZZZ        | M0027540.D | 05/24/08 | 16:19    | 08:03  | (unrelated sample)                         |
| ZZZZZZ        | M0027541.D | 05/24/08 | 16:45    | 08:29  | (unrelated sample)                         |
| ZZZZZZ        | M0027542.D | 05/24/08 | 17:12    | 08:56  | (unrelated sample)                         |
| ZZZZZZ        | M0027543.D | 05/24/08 | 17:38    | 09:22  | (unrelated sample)                         |
| ZZZZZZ        | M0027544.D | 05/24/08 | 18:05    | 09:49  | (unrelated sample)                         |
| ZZZZZZ        | M0027545.D | 05/24/08 | 18:32    | 10:16  | (unrelated sample)                         |
| ZZZZZZ        | M0027546.D | 05/24/08 | 18:58    | 10:42  | (unrelated sample)                         |
|               |            |          |          |        | • •                                        |



<sup>(</sup>b) Value is % of mass 176

Job Number:

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

Sample: Lab File ID: VM1134-BFB M0027522.D

Injection Date: 05/24/08

Instrument ID: GCMSM

Injection Time: 08:16

Lab Sample ID

Lab File ID Date Analyzed

Time Analyzed

Hours Lapsed

Client Sample ID

ZZZZZZ

M0027547.D 05/24/08

19:25

11:09

(unrelated sample)

Job Number: F57467

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample: Lab FileID:

VM1134-CC1133 M0027523.D

Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\052408\M0027523.D

Vial: 1

Acq On : 24 May 2008 8:42 am

Operator: MelissaM

Sample

: cc1133-4

Inst : MSVOA7

Misc

Multiplr: 1.00

: ms9810, vm1134,,,,

MS Integration Params: Tiny.p

Method

: C:\MSDCHEM\1\METHODS\8260MNEW.M (RTE Integrator)

: SW-846 Method 5030B/8260B & EPA 624

Last Update : Sat May 24 08:57:21 2008

Response via : Multiple Level Calibration

0.001 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20%

Max. Rel. Area: 200%

|      | Compound                  | AvgRF        | CCRF      | %Dev   | Area% | Dev(m:    | ln)R.T. |
|------|---------------------------|--------------|-----------|--------|-------|-----------|---------|
| 1 I  | Fluorobenzene             | 1.000        | 1.000     | 0.0    | 98    | 0.00      | 7.68    |
|      |                           | Amount       | Calc.     | %Drift |       |           |         |
| 2    | Dichlorodifluoromethane   |              |           | 0.8    | 98    | -0.01     | 2.81    |
|      |                           | AvgRF        | CCRF      | %Dev   |       |           |         |
| 3 P  | Chloromethane             | 0.547        | 0.547     | 0.0    | 90    | 0.00      | 3.10    |
|      |                           | Amount       | Calc.     | %Drift |       | <b></b>   |         |
| 4 C  | Vinyl Chloride            | 40.000       |           | 8.4    |       | 0.00      | 3.20    |
| 5    | Bromomethane              | 40.000       | 53.379    | -33.4# | 118   | 0.00      | 3.62    |
| 6    | Chloroethane              | 40.000       | 46.523    | -16.3  |       | 0.00      | 3.71    |
| 7    | Trichlorofluoromethane    | 40.000       | 41.739    | -4.3   |       | 0.00      | 3.91    |
|      |                           | AvgRF        | CCRF      | %Dev   |       |           |         |
| 8    | Ethyl Ether               | 0.495        | 0.513     | -3.6   |       | 0.00      | 4.13    |
| 9    | 1,2-Dichlorotrifluoroetha |              |           | -10.8  |       |           | 4.39    |
|      |                           | Amount       | Calc.     | %Drift |       |           |         |
| 10 C | 1,1-Dichloroethene        | 40.000       |           | -7.4   |       | 0.00      | 4 41    |
| 11   | Freon 113                 | 40.000       |           | -9.1   |       | 0.00      | 4.49    |
| 12   | Carbon Disulfide          | 40.000       | 41.925    | -4.8   | 103   | 0.00      | 4.47    |
|      |                           | AvaRF        | CCRF      | %Dev   |       | <b></b> - |         |
| 13   | Iodomethane               | 0.632        | 0.686     |        | 99    | 0.00      | 4.60    |
|      |                           | Amount       | Calc.     | %Drift |       | <b></b>   |         |
| 14   | Methylene Chloride        | 40.000       | 41.284    | -3.2   | 103   | 0.00      | 5.04    |
| 15   | Acetone                   | 200.000      | 145.991   | 27.0#  | 75    | 0.00      | 5.08    |
|      |                           | AvaRF        | CCRF      | %Dev   |       |           |         |
| 16   | Methyl acetate            | 0.053        | 0.047     | 11.3   | 80    | 0.00      | 5.19    |
|      |                           | Amount       | Calc.     | %Drift |       |           |         |
| 17   | trans-1,2-Dichloroethene  |              | 42.649    | -6.6   | 103   | 0.00      | 5.20    |
| 18   | Hexane                    | 40.000       | 39.883    | 0.3    |       |           | 5.24    |
|      | -÷                        | AvaRF        | CCRF      | %Dev   |       | <b></b>   |         |
| 19   | Methyl Tert Butyl Ether   |              |           | 2.9    | 93    | 0.00      | 5.31    |
| 20   | Di-isopropyl ether        | 1.344        | 1.436     | -6.8   | 100   | 0.00      | 5.68    |
| 21 P | 1,1-Dichloroethane        | 0.466        | 0.508     | -9.0   | 102   | 0.00      | 5.86    |
| 22   | Acrylonitrile             | 0.163        | 0.151     | 7.4    | 89    | 0.00      | 5.92    |
|      | . <b>-</b>                | <del>-</del> | · · · · · |        |       | ,,,,      | 0.52    |

Page 2 of 4

Continuing Calibration Summary Job Number: F57467

VM1134-CC1133 Sample:

| Job Num<br>Account:<br>Project: |                                             |                |                | Sample:<br>Lab FileID: |           | 1134-CC11<br>)27523.D |              |
|---------------------------------|---------------------------------------------|----------------|----------------|------------------------|-----------|-----------------------|--------------|
| 23<br>24                        | ETBE<br>Vinyl agotato                       | 1.006<br>0.851 | 1.064<br>0.884 | -5.8<br>-3.9           | 100<br>98 | 0.00                  | 6.07<br>6.07 |
| 44                              | Vinyl acetate                               | 0.001          | 0.004          | -3.9                   | 90        | 0.00                  | 0.07         |
|                                 |                                             | Amount         | Calc.          | %Drift                 | ·         |                       |              |
| 25                              | cis-1,2-Dichloroethene                      | 40.000         | 41.281         |                        | 99        | 0.00                  | 6.42         |
| 26                              | 2,2-Dichloropropane                         | 40.000         | 46.004         | -15.0                  | 111       | 0.00                  | 6.55         |
|                                 |                                             |                | CCRF           | %Dev                   |           |                       |              |
| 27                              | Bromochloromethane                          | 0.172          | 0.184          | -7.0                   | 101       | 0.00                  | 6.63         |
|                                 |                                             | Amount         | Calc.          | %Drift                 |           |                       |              |
| 28                              | Cyclohexane                                 | 40.000         | 45.541         | -13.9                  | 111       | 0.00                  | 6.65         |
|                                 |                                             | AvgRF          | CCRF           | %Dev                   |           |                       |              |
| 29 C                            | Chloroform                                  | 0.418          | 0.456          | -9.1                   | 102       | 0.00                  | 6.68         |
| 30                              | Tetrahydrofuran                             | 0.153          | 0.134          |                        | 87        | 0.00                  | 6.85         |
| 31 S                            | Dibromofluoromethane                        | 0.241          | 0.242          | -0.4                   | 99        | 0.00                  | 6.87         |
|                                 |                                             | Amount         | Calc.          |                        |           |                       |              |
| 32                              | Carbon Tetrachloride                        | 40.000         |                |                        | 108       | 0.00                  | 6.85         |
| 33                              | 1,1,1-Trichloroethane                       | 40.000         | 43.094         | -7.7                   | 104       | 0.00                  | 6.93         |
|                                 |                                             | AvgRF          | CCRF           | %Dev                   |           |                       |              |
| 34                              | 2-Butanone                                  | 0.228          | 0.202          | 11.4                   | 85        | 0.00                  | 6.99         |
|                                 |                                             | Amount         | Calc.          | %Drift                 |           |                       |              |
| 35                              | 1,1-Dichloropropene                         | 40.000         | 43.528         | -8.8                   | 106       | 0.00                  | 7.02         |
| 36                              | Benzene                                     | 40.000         | 41.732         | -4.3                   | 101       | 0.00                  | 7.28         |
|                                 |                                             | AvgRF          | CCRF           | %Dev                   |           |                       |              |
| 37                              | TAME                                        | 0.668          | 0.683          | -2.2                   | 95        | 0.00                  | 7.36         |
| 38 S                            | 1,2-Dichloroethane-d4                       | 0.262          | 0.265          |                        | 97        | 0.00                  | 7.42         |
| 39                              | 1,2-Dichloroethane                          | 0.328          | 0.341          | -4.0                   | 100       | 0.00                  | 7.48         |
|                                 |                                             | Amount         | Calc.          | %Drift                 |           |                       |              |
| 40                              | Trichloroethene                             | 40.000         | 42.084         |                        | 102       | 0.00                  | 7.84         |
| 41                              | Methylcyclohexane                           | 40.000         | 45.855         | -14.6                  | 112       | 0.00                  | 7.84         |
|                                 |                                             | AvgRF          | CCRF           | %Dev                   |           |                       |              |
| 42                              | Dibromomethane                              | 0.159          | 0.170          | -6.9                   | 98        | 0.00                  | 8.28         |
| 43 C                            | 1,2-Dichloropropane<br>Bromodichloromethane | 0.325<br>0.332 | 0.352<br>0.357 |                        | 100       | 0.00                  |              |
| 44                              |                                             |                |                |                        |           |                       | 8.41         |
| 4.5                             |                                             |                |                |                        |           |                       |              |
| 45                              | 2-Chloroethyl vinyl ether                   |                |                | 2.9                    | 95        | 0.00                  | 8.93         |
|                                 | ·                                           |                | CCRF           | %Dev                   |           |                       |              |
| 46                              | cis-1,3-Dichloropropene                     | 0.415          | 0.452          | -8.9                   | 100       | 0.00                  | 9.02         |
| 47 I                            | Chlorobenzene-d5                            | 1.000          | 1.000          | 0.0                    | 101       | 0.00                  | 10.75        |
| 48 S                            | Toluene-d8                                  | 1.172          | 1.137          | 3.0                    | 101       | 0.00                  | 9.21         |
|                                 |                                             | Amount         | Calc.          | %Drift                 |           |                       |              |
| 49 C                            | Toluene                                     | 40.000         | 41.926         |                        | 105       | 0.00                  | 9.26         |
|                                 |                                             | AvaRF          | CCRF           | %Dev                   |           |                       |              |
| 50                              | 2-Nitropropane                              |                | 0.097          |                        | 94        | 0.00                  | 9.50         |
| 51                              | 4-Methyl-2-pentanone                        | 0.517          | 0.483          | 6.6                    | 93        | 0.00                  | 9.61         |
| 52                              | trans-1,3-Dichloropropene                   |                | 0.426          |                        | 102       | 0.00                  | 9.65         |
|                                 |                                             |                |                |                        |           |                       |              |



Page 3 of 4

## Continuing Calibration Summary Job Number: F57467

| Continuing Calibration Summary Job Number: F57467 Account: TETRPAPT Tetra Tech NUS Project: NAS Key West, Key West, FL |                                           |                  |                 | Sample:<br>Lab FileID: |            | 1134-CC1<br>127523.D | Page 3 of 4                     |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|-----------------|------------------------|------------|----------------------|---------------------------------|
|                                                                                                                        |                                           |                  |                 |                        |            |                      |                                 |
| 53                                                                                                                     | Tetrachloroethene                         | 40.000           | 43.498          | -8.7                   | 109        | 0.00                 | 9.64                            |
|                                                                                                                        |                                           |                  | CCRF            |                        |            |                      |                                 |
| 54                                                                                                                     | 1,1,2-Trichloroethane                     | 0.265            | 0.262           | 1.1                    | 97         | 0.00                 | 9.82                            |
| 55                                                                                                                     | Dibromochloromethane                      | 0.302            | 0.311           |                        | 98         | 0.00                 | 10.01                           |
| 56<br>57                                                                                                               | 1,3-Dichloropropane                       | 0.528            | 0.518           |                        | 97<br>94   | 0.00                 | 9.82<br>10.01<br>10.10<br>10.27 |
| 58                                                                                                                     | <pre>1,2-Dibromoethane 2-hexanone</pre>   | 0.301<br>0.368   | 0.293<br>0.337  | 8.4                    |            |                      | 10.42                           |
|                                                                                                                        |                                           | - Amount         | Calc.           | %Drift                 |            | <b></b>              |                                 |
| 59                                                                                                                     | 1-Chlorohexane                            | 40.000           | 43.544          | -8.9                   | 109        | 0.00                 | 10.70                           |
| 60 C                                                                                                                   | Ethylbenzene                              | 40.000           | 42.349          | -5.9                   | 106        | 0.00                 | 10.76                           |
|                                                                                                                        |                                           |                  | CCRF            |                        |            |                      |                                 |
| 61 P                                                                                                                   | Chlorobenzene                             | 0.890            | 0.969           |                        |            | 0.00                 |                                 |
| 62                                                                                                                     | 1,1,1,2-Tetrachloroethane                 | 0.276            | 0.292           | -5.8                   | 101        | 0.00                 | 10.82                           |
|                                                                                                                        |                                           |                  |                 |                        |            |                      |                                 |
| 63                                                                                                                     | m,p-Xylene                                | 80.000           | 83.902          | -4.9                   |            | 0.00                 |                                 |
| 54                                                                                                                     | o-Xylene                                  | 40.000           |                 | -3.3                   |            | 0.00                 | 11.35                           |
| 65<br>66 n                                                                                                             | Styrene                                   | 40.000           | 40.977          | -2.4                   |            | 0.00                 | 11.40                           |
| 66 P<br>67                                                                                                             | Bromoform                                 | 40.000<br>40.000 | 37.865          | 5.3<br>-4.9            | 95<br>105  | 0.00                 | 11.45<br>11.65                  |
| ) /                                                                                                                    | Isopropylbenzene                          | 40.000           | 41.972          | -4.9                   | 103        | 0.00                 | 11.65                           |
|                                                                                                                        | <b></b>                                   |                  | CCRF            | %Dev                   |            |                      |                                 |
| 68 I                                                                                                                   | 1,4-Dichlorobenzene-d4                    | 1.000            | 1.000           | 0.0                    |            | 0.00                 |                                 |
| 59 S                                                                                                                   | 4-Bromofluorobenzene                      | 0.786            | 0.769           | 2.2                    | 99         | 0.00                 | 11.96                           |
| 7.0                                                                                                                    |                                           |                  | Calc.           |                        |            |                      |                                 |
| 70 ·                                                                                                                   | n-Propylbenzene                           | 40.000           | 42.448          | -6.1                   | 105        | 0.00                 | 12.07                           |
|                                                                                                                        |                                           | - AvgRF          | CCRF            |                        |            |                      |                                 |
| 71<br>72 D                                                                                                             | Bromobenzene                              |                  | 0.758           |                        |            | 0.00                 |                                 |
| 72 P                                                                                                                   | 1,1,2,2-Tetrachloroethane                 | 0.701            | 0.703           | -0.3                   | 98         | 0.00                 | 12.15                           |
|                                                                                                                        |                                           |                  |                 |                        |            |                      |                                 |
| 13<br>14                                                                                                               | 1,3,5-Trimethylbenzene<br>2-Chlorotoluene | 40.000<br>40.000 | 41.444          | -3.6<br>-3.0           | 104        | 0.00                 | 12.25                           |
| 4                                                                                                                      |                                           |                  | 41.210          | -3.0                   | 103        | 0.00                 | 12.25                           |
|                                                                                                                        |                                           |                  | CCRF            | %Dev                   |            |                      |                                 |
| 75                                                                                                                     | trans-1,4-Dichloro-2-Bute                 |                  | 0.234           | 3.7                    | 93         | 0.00                 | 12.33                           |
| 76                                                                                                                     | 1,2,3-Trichloropropane                    | 0.194            | 0.183           | 5.7                    | 89         | 0.00                 |                                 |
| 77                                                                                                                     | Cyclohexanone                             | 0.025            | 0.022           | 12.0                   | 87         | 0.00                 | 12.38                           |
| 7.0                                                                                                                    | 4-Chlorotoluene                           |                  | Calc.<br>41.506 | %Drift<br>-3.8         | 102        | 0.00                 | 10 40                           |
| 78<br>79                                                                                                               | tert-Butylbenzene                         | 40.000<br>40.000 | 41.789          |                        | 103<br>104 | 0.00                 | 12.42<br>12.60                  |
| 30                                                                                                                     | 1,2,4-Trimethylbenzene                    |                  | 41.769          | -4.3<br>-4.7           | 104        | 0.00                 | 12.66                           |
| 31                                                                                                                     | sec-Butylbenzene                          | 40.000           | 42.040          | -5.1                   | 105        | 0.00                 | 12.78                           |
| 82                                                                                                                     | 4-Isopropyltoluene                        | 40.000           | 42.008          | -5.0                   | 105        | 0.00                 | 12.91                           |
|                                                                                                                        | ·<br>                                     | - AvaRF          | CCRF            | %Dev                   |            |                      |                                 |
| 83                                                                                                                     | 1,3-Dichlorobenzene                       | 1.274            | 1.360           | -6.8                   | 103        | 0.00                 | 13.04                           |
| 84                                                                                                                     | 1,4-Dichlorobenzene                       | 1.351            | 1.444           | -6.9                   | 103        | 0.00                 | 13.13                           |
|                                                                                                                        |                                           | - Amount         | Calc.           | %Drift                 |            |                      | - <del></del>                   |
| 85                                                                                                                     | n-Butylbenzene                            | 40.000           | 41.882          | -4.7                   | 104        | 0.00                 | 13.35                           |
| 86                                                                                                                     | Benzyl Chloride                           | 40.000           | 40.970          | -2.4                   | 103        | 0.00                 | 13.37                           |



#### **Continuing Calibration Summary**

| Contin<br>Job Num<br>Account:<br>Project: |                           | 7       |         | Sample:<br>Lab FileID: |     | 1134-CC11<br>027523.D | Page 4 of 4 |
|-------------------------------------------|---------------------------|---------|---------|------------------------|-----|-----------------------|-------------|
|                                           |                           | - AvaDE | CCRF    | %Dev                   |     |                       |             |
| 87                                        | 1,2-Dichlorobenzene       | 1.256   | 1.315   | · -                    | 100 | 0.00                  | 13.56       |
| 88                                        | 1,2-Dibromo-3-Chloropropa |         | 0.095   | 4.0                    | 87  | 0.00                  | 14.30       |
|                                           |                           | Amount  | Calc.   | %Drift                 |     |                       |             |
| 89                                        | Hexachlorobutadiene       | 40.000  | 41.384  | -3.5                   | 103 | 0.00                  | 14.84       |
| 90                                        | 1,2,4-Trichlorobenzene    | 40.000  | 39.437  | 1.4                    | 98  | 0.00                  | 14.89       |
| 91                                        | Naphthalene               | 40.000  | 35.964  | 10.1                   | 89  | 0.00                  | 15.18       |
| 92                                        | 1,2,3-Trichlorobenzene    | 40.000  | 38.560  | 3.6                    | 96  | 0.00                  | 15.34       |
|                                           |                           | AvaRF   | CCRF    | %Dev                   |     |                       |             |
| 93 I                                      | Tert Butyl Alcohol-d10    | 1.000   | 1.000   | 0.0                    | 86  | 0.01                  | 5.32        |
|                                           |                           |         |         | %Drift                 |     |                       |             |
| 94                                        | acrolein                  | 200.000 | 175.775 | 12.1                   | 78  | 0.00                  | 4.77        |
|                                           |                           | AvaRF   | CCRF    | %Dev                   |     |                       |             |
| 95                                        |                           | 1.248   |         | 3.5                    | 85  | 0.00                  | 5.39        |
| 96                                        | tert Amyl alcohol         | 1.120   | 1.131   | -1.0                   | 84  | 0.00                  | 7.52        |
|                                           | ·                         | Amount  | Calc.   | %Drift                 |     |                       |             |
| 97                                        | 1,4-Dioxane               | 800.000 | 871.949 | -9.0                   | 91  | 0.00                  | 8.60        |

(#) = Out of Range SPCC's out = 0 CCC's out = 0 M0027491.D 8260MNEW.M Tue May 27 14:39:12 2008



#### Volatile Internal Standard Area Summary

Job Number: F57467

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

| Check |         |
|-------|---------|
| Lab F | ile ID: |

VJ2472-CC2469 J038536.D Injection Date: 05/23/08 Injection Time: 09:59

Instrument ID: GCMSJ

Method:

SW846 8260B

| instrument ib. | COMOJ   |      |         | 14,   | iomou.  | <b>.</b> | (010,08008 |      |
|----------------|---------|------|---------|-------|---------|----------|------------|------|
|                | IS 1    |      | IS 2    |       | IS 3    |          | IS 4       | •    |
|                | AREA    | RT   | AREA    | RT    | AREA    | RT       | AREA       | RT   |
| Check Std      | 1412221 | 7.63 | 1103337 | 10.69 | 569685  | 13.05    | 136525     | 5.36 |
| Upper Limit a  | 2824442 | 8.13 | 2206674 | 11.19 | 1139370 | 13.55    | 273050     | 5.86 |
| Lower Limit b  | 706111  | 7.13 | 551669  | 10.19 | 284843  | 12.55    | 68263      | 4.86 |
| Lab            | IS 1    |      | IS 2    |       | IS 3    |          | IS 4       |      |
| Sample ID      | AREA    | RT   | AREA    | RT    | AREA    | RT       | AREA       | RT   |
| VJ2472-BS      | 1467671 | 7.63 | 1106240 | 10.69 | 566141  | 13.05    | 131480     | 5.37 |
| VJ2472-MB      | 1454670 | 7.61 | 1009337 | 10.69 | 440134  | 13.05    | 128663     | 5.39 |
| ZZZZZZ         | 1354953 | 7.62 | 962177  | 10.69 | 430812  | 13.05    | 123964     | 5.42 |
| ZZZZZZ         | 1254419 | 7.63 | 899339  | 10.69 | 386594  | 13.05    | 106557     | 5.39 |
| ZZZZZZ         | 1304792 | 7.62 | 958498  | 10.69 | 485717  | 13.05    | 130559     | 5.31 |
| ZZZZZZ         | 1579173 | 7.62 | 1150795 | 10.69 | 583662  | 13.05    | 162082     | 5.36 |
| ZZZZZZ         | 1739580 | 7.62 | 1262390 | 10.69 | 599136  | 13.05    | 160946     | 5.37 |
| ZZZZZZ         | 1657649 | 7.62 | 1211023 | 10.69 | 557233  | 13.05    | 150813     | 5.37 |
| ZZZZZZ         | 1631098 | 7.61 | 1159000 | 10.69 | 542367  | 13.05    | 139065     | 5.40 |
| F57465-2       | 1631962 | 7.61 | 1188010 | 10.69 | 552327  | 13.05    | 117140     | 5.41 |
| F57465-2MS     | 1668134 | 7.61 | 1252473 | 10.69 | 619232  | 13.05    | 144897     | 5.41 |
| F57465-2MSD    | 1717373 | 7.61 | 1266126 | 10.69 | 628176  | 13.05    | 152626     | 5.41 |
| ZZZZZZ         | 1656875 | 7.62 | 1171164 | 10.69 | 518516  | 13.05    | 221590     | 5.41 |
| ZZZZZZ         | 1629349 | 7.61 | 1321091 | 10.69 | 602717  | 13.05    | 177045     | 5.42 |
| ZZZZZZ         | 1497783 | 7.62 | 1076843 | 10.69 | 468062  | 13.05    | 166561     | 5.41 |
| ZZZZZZ         | 1408694 | 7.62 | 1008310 | 10.69 | 442385  | 13.05    | 181891     | 5.39 |
| ZZZZZZ         | 1359370 | 7.62 | 966597  | 10.69 | 451628  | 13.05    | 135972     | 5.36 |
| ZZZZZZ         | 1330973 | 7.62 | 977054  | 10.69 | 446395  | 13.05    | 131296     | 5.36 |
| ZZZZZZ         | 1335346 | 7.63 | 992464  | 10.69 | 454091  | 13.05    | 116953     | 5.36 |
| ZZZZZZ         | 1331783 | 7.63 | 978934  | 10.69 | 444832  | 13.05    | 117900     | 5.34 |
| F57467-1       | 1295025 | 7.63 | 948220  | 10.69 | 451009  | 13.05    | 180363     | 5.37 |

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 IS 4 = Tert Butyl Alcohol-D10



<sup>(</sup>a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

<sup>(</sup>b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

#### Volatile Internal Standard Area Summary

Job Number: F57467

Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

| Check Std:     | VM1133-CC1133 | Injection Date: | 05/23/08    |  |
|----------------|---------------|-----------------|-------------|--|
| Lab File ID:   | M0027496.D    | Injection Time: | 13:36       |  |
| Instrument ID: | GCMSM         | Method:         | SW846 8260B |  |

|                          | IS 1    |      | IS 2    |       | IS 3    |       | IS 4   |      |  |
|--------------------------|---------|------|---------|-------|---------|-------|--------|------|--|
|                          | AREA    | RT   | AREA    | RT    | AREA    | RT    | AREA   | RT   |  |
| Check Std                | 2234637 | 7.68 | 1910234 | 10.75 | 982608  | 13.11 | 221465 | 5.33 |  |
| Upper Limit <sup>a</sup> | 4469274 | 8.18 | 3820468 | 11.25 | 1965216 | 13.61 | 442930 | 5.83 |  |
| Lower Limit <sup>b</sup> | 1117319 | 7.18 | 955117  | 10.25 | 491304  | 12.61 | 110733 | 4.83 |  |
| Lab                      | IS 1    |      | IS 2    |       | IS 3    |       | IS 4   |      |  |
| Sample ID                | AREA    | RT   | AREA    | RT    | AREA    | RT    | AREA   | RT   |  |
| VM1133-BS                | 2208339 | 7.68 | 1868422 | 10.75 | 959062  | 13.11 | 237033 | 5.32 |  |
| VM1133-MB                | 2118109 | 7.68 | 1742973 | 10.75 | 848857  | 13.11 | 240183 | 5.31 |  |
| ZZZZZZ                   | 1978796 | 7.68 | 1638713 | 10.75 | 790158  | 13.11 | 222617 | 5.30 |  |
| F57606-1                 | 1866359 | 7.68 | 1542129 | 10.75 | 752781  | 13.11 | 210160 | 5.31 |  |
| ZZZZZZ                   | 1816509 | 7.68 | 1564635 | 10.75 | 760597  | 13.11 | 201512 | 5.31 |  |
| ZZZZZZ                   | 1786824 | 7.68 | 1574175 | 10.75 | 775863  | 13.11 | 191426 | 5.31 |  |
| F57606-1MS               | 1825015 | 7.68 | 1620485 | 10.75 | 839863  | 13.11 | 197824 | 5.31 |  |
| F57606-1MSD              | 1861686 | 7.68 | 1625236 | 10.75 | 845233  | 13.11 | 200886 | 5.30 |  |
| ZZZZZZ                   | 1825611 | 7.68 | 1508695 | 10.75 | 740254  | 13.11 | 198132 | 5.30 |  |
| ZZZZZZ                   | 1761769 | 7.68 | 1451481 | 10.75 | 717628  | 13.11 | 182261 | 5.31 |  |
| ZZZZZZ                   | 1714400 | 7.68 | 1416952 | 10.75 | 694932  | 13.11 | 170537 | 5.31 |  |
| ZZZZZZ                   | 1641631 | 7.68 | 1373762 | 10.75 | 670568  | 13.11 | 165485 | 5.31 |  |
| ZZZZZZ                   | 1598591 | 7.68 | 1352092 | 10.75 | 660489  | 13.11 | 162414 | 5.31 |  |
| ZZZZZZ                   | 1558914 | 7.68 | 1327584 | 10.75 | 649997  | 13.11 | 159162 | 5.31 |  |
| ZZZZZZ                   | 1516655 | 7.68 | 1295049 | 10.75 | 635480  | 13.11 | 163494 | 5.32 |  |
| ZZZZZZ                   | 1482066 | 7.68 | 1274120 | 10.75 | 626154  | 13.11 | 157364 | 5.31 |  |
| ZZZZZZ                   | 1524673 | 7.68 | 1358776 | 10.75 | 688215  | 13.11 | 161608 | 5.31 |  |
| ZZZZZZ                   | 1551661 | 7.68 | 1397155 | 10.75 | 704832  | 13.11 | 167191 | 5.31 |  |
| ZZZZZZ                   | 1569914 | 7.68 | 1376174 | 10.75 | 694811  | 13.11 | 179139 | 5.31 |  |
| ZZZZZZ                   | 1563248 | 7.68 | 1343944 | 10.75 | 668919  | 13.11 | 176671 | 5.30 |  |
| F57467-4                 | 1526512 | 7.68 | 1283228 | 10.75 | 636058  | 13.11 | 228495 | 5.31 |  |
| F57467-5                 | 1501263 | 7.68 | 1292395 | 10.75 | 639468  |       | 211975 | 5.31 |  |
| F57467-6                 | 1489475 | 7.68 | 1291357 |       | 674214  |       | 237138 | 5.31 |  |
| F57467-7                 | 1522233 | 7.68 | 1308493 |       | 677152  |       | 243991 | 5.30 |  |

IS 1 = Fluorobenzene



IS 2 = Chlorobenzene-D5

IS 3 = 1,4-Dichlorobenzene-d4

IS 4 = Tert Butyl Alcohol-D10

<sup>(</sup>a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

<sup>(</sup>b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

#### Volatile Internal Standard Area Summary

Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Check Std: Lab File ID: VM1134-CC1133 M0027523.D Injection Date: 05/24/08 Injection Time: 08:42

Instrument ID: GCMSM

Method:

SW846 8260B

|                          |              |      |              |       |              | •     | .010 02002   |      |
|--------------------------|--------------|------|--------------|-------|--------------|-------|--------------|------|
|                          | IS 1<br>AREA | RT   | IS 2<br>AREA | RT    | IS 3<br>AREA | RT    | IS 4<br>AREA | RT   |
| Check Std                | 1743007      | 7.68 | 1613808      | 10.75 | 848896       | 13.11 | 164777       | 5.32 |
| Upper Limit <sup>a</sup> | 3486014      | 8.18 | 3227616      | 11.25 | 1697792      | 13.61 | 329554       | 5.82 |
| Lower Limit <sup>b</sup> | 871504       | 7.18 | 806904       | 10.25 | 424448       | 12.61 | 82389        | 4.82 |
| Lab                      | IS 1         |      | IS 2         |       | IS 3         |       | IS 4         |      |
| Sample ID                | AREA         | RT   | AREA         | RT    | AREA         | RT    | AREA         | RT   |
| VM1134-BS                | 1815363      | 7.68 | 1592690      | 10.75 | 839166       | 13.11 | 188459       | 5.32 |
| VM1134-MB                | 1797964      | 7.68 | 1493442      | 10.75 | 724349       | 13.11 | 178846       | 5.31 |
| ZZZZZZ                   | 1632888      | 7.68 | 1385443      | 10.75 | 690433       | 13.11 | 208916       | 5.31 |
| F57492-1                 | 1614663      | 7.68 | 1668481      | 10.75 | 699981       | 13.11 | 166994       | 5.31 |
| ZZZZZZ                   | 1674934      | 7.68 | 1477308      | 10.75 | 764246       | 13.11 | 167658       | 5.31 |
| ZZZZZZ                   | 1779249      | 7.68 | 1605056      | 10.75 | 754980       | 13.11 | 189450       | 5.31 |
| F57492-1                 | 1776930      | 7.68 | 1496400      | 10.75 | 705885       | 13.11 | 172877       | 5.31 |
| F57492-1MS               | 1685171      | 7.68 | 1540107      | 10.75 | 788758       | 13.11 | 177287       | 5.31 |
| F57492-1MSD              | 1757425      | 7.68 | 1591727      | 10.75 | 824741       | 13.11 | 186267       | 5.31 |
| F57467-2                 | 1762368      | 7.68 | 1458944      | 10.75 | 708666       | 13.11 | 283382       | 5.31 |
| F57467-3                 | 1690070      | 7.68 | 1414760      | 10.75 | 686638       | 13.11 | 275645       | 5.31 |
| ZZZZZZ                   | 1612461      | 7.68 | 1372565      | 10.75 | 663061       | 13.11 | 174449       | 5.31 |
| ZZZZZZ                   | 1574380      | 7.68 | 1341553      | 10.75 | 646953       | 13.11 | 161113       | 5.30 |
| ZZZZZZ                   | 1527770      | 7.68 | 1427835      | 10.75 | 641325       | 13.11 | 155461       | 5.31 |
| ZZZZZZ                   | 1515611      | 7.68 | 1297711      | 10.75 | 632634       | 13.11 | 148092       | 5.31 |
| ZZZZZZ                   | 1484788      | 7.68 | 1341870      | 10.75 | 755110       | 13.11 | 149789       | 5.30 |
| ZZZZZZ                   | 1486885      | 7.68 | 1251291      | 10.75 | 617482       | 13.11 | 154370       | 5.32 |
| ZZZZZZ                   | 1450777      | 7.68 | 1218392      | 10.75 | 599560       | 13.11 | 143540       | 5.31 |
| ZZZZZZ                   | 1427623      | 7.68 | 1207099      | 10.75 | 586798       | 13.11 | 134959       | 5.30 |
| ZZZZZZ                   | 1415762      | 7.68 | 1414962      | 10.75 | 630903       | 13.11 | 157550       | 5.31 |
| ZZZZZZ                   | 1414215      | 7.68 | 1208625      | 10.75 | 580172       | 13.11 | 133964       | 5.31 |
| ZZZZZZ                   | 1390653      | 7.68 | 1167206      | 10.75 | 562876       | 13.11 | 123387       | 5.32 |
| ZZZZZZ                   | 1413006      | 7.68 | 1212108      | 10.75 | 612272       | 13.11 | 129419       | 5.31 |
| ZZZZZZ                   | 1409773      | 7.68 | 1186777      | 10.75 | 572415       | 13.11 | 120158       | 5.32 |

IS 1 = Fluorobenzene

IS 2 = Chlorobenzene-D5

IS 3 = 1,4-Dichlorobenzene-d4

IS 4 = Tert Butyl Alcohol-D10

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



Job Number:

F57467

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Method: SW846 8270C BY SIM

Matrix: AQ

Samples and QC shown here apply to the above method

| Lab         | Lab       | •          |      |      |   |
|-------------|-----------|------------|------|------|---|
| Sample ID   | File ID   | <b>S</b> 1 | S2   | S3   |   |
| F57467-1    | R13734.D  | 54.0       | 53.0 | 50.0 |   |
| F57467-2    | R13735.D  | 60.0       | 59.0 | 56.0 | ? |
| F57467-3    | R13736.D  | 64.0       | 63.0 | 56.0 |   |
| F57467-4    | R13737.D  | 60.0       | 61.0 | 50.0 |   |
| F57467-5    | R13749.D  | 61.0       | 55.0 | 46.0 |   |
| F57467-6    | W040638.D | 56.0       | 45.0 | 65.0 | 2 |
| F57467-7    | W040639.D | 56.0       | 46.0 | 63.0 |   |
| OP25062-BS  | R13713.D  | 65.0       | 65.0 | 67.0 |   |
| OP25062-MB  | R13714.D  | 64.0       | 66.0 | 69.0 |   |
| OP25062-MB  | R13743.D  | 65.0       | 60.0 | 72.0 |   |
| OP25062-MS  | R13727.D  | 59.0       | 60.0 | 64.0 |   |
| OP25062-MSD | R13728.D  | 66.0       | 65.0 | 67.0 |   |
| OP25106-BS  | W040625.D | 69.0       | 60.0 | 69.0 |   |
| OP25106-MB  | W040624.D | 62.0       | 53.0 | 68.0 |   |
| OP25106-MB  | W040672.D | 57.0       | 60.0 | 66.0 |   |
| OP25106-MS  | W040629.D | 60.0       | 52.0 | 63.0 |   |
| OP25106-MSD | W040630.D | 62.0       | 62.0 | 65.0 |   |

Surrogate Compounds Recovery Limits

S1 = Nitrobenzene-d5S2 = 2-Fluorobiphenyl S3 = Terphenyl-d14

42-108% 40-106%

39-121%

#### Matrix Spike/Matrix Spike Duplicate Summary

Page 1 of 1

Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5

|           |                        | F57465-6 | Spike | MS   | MS     | MSD     | MSD      |     | Limits    |
|-----------|------------------------|----------|-------|------|--------|---------|----------|-----|-----------|
| CAS No.   | Compound               | ug/l Q   | ug/l  | ug/l | %      | ug/l    | %        | RPD | Rec/RPD   |
| 83-32-9   | Acenaphthene           | 0.96 U   | 48.1  | 34.2 | 71     | 37.0    | 77       | 8   | 60-94/25  |
| 208-96-8  | Acenaphthylene         | 0.96 U   | 48.1  | 33.1 | 69     | 36.0    | 75       | 8   | 60-92/24  |
| 120-12-7  | Anthracene             | 0.96 U   | 48.1  | 34.4 | 72     | 37.0    | 77       | 7   | 69-98/19  |
| 56-55-3   | Benzo(a)anthracene     | 0.19 U   | 4.81  | 3.6  | 75     | 3.8     | 79       | 5   | 65-102/23 |
| 50-32-8   | Benzo(a)pyrene         | 0.19 U   | 4.81  | 3.7  | 77     | 3.9     | 81       | 5   | 74-106/23 |
| 205-99-2  | Benzo(b)fluoranthene   | 0.19 U   | 4.81  | 3.5  | 73     | 3.7     | 77       | 6   | 71-104/24 |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.19 U   | 4.81  | 3.8  | 79     | 3.9     | 81       | 3   | 60-104/22 |
| 207-08-9  | Benzo(k)fluoranthene   | 0.19 U   | 4.81  | 3.6  | 75     | 3.8     | 79       | 5   | 70-104/22 |
| 218-01-9  | Chrysene               | 0.19 U   | 4.81  | 3.7  | 77     | 3.8     | 79       | 3   | 69-104/21 |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.19 U   | 4.81  | 3.8  | 79     | 3.9     | 81       | 3   | 63-107/21 |
| 206-44-0  | Fluoranthene           | 0.96 U   | 48.1  | 36.7 | 76     | 38.6    | 80       | 5   | 70-99/23  |
| 86-73-7   | Fluorene               | 0.96 U   | 48.1  | 35.0 | 73     | 37.5    | 78       | 7   | 62-95/25  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.19 U   | 4.81  | 3.7  | 77     | 3.8     | 79       | 3   | 63-107/24 |
| 90-12-0   | 1-Methylnaphthalene    | 0.96 U   | 48.1  | 36.3 | 76     | 39.6    | 82       | 9   | 57-94/26  |
| 91-57-6   | 2-Methylnaphthalene    | 0.96 U   | 48.1  | 32.8 | 68     | 35.7    | 74       | 8   | 58-90/23  |
| 91-20-3   | Naphthalene            | 0.96 U   | 48.1  | 34.4 | 72     | 37.4    | 78       | 8   | 58-92/23  |
| 85-01-8   | Phenanthrene           | 0.96 U   | 48.1  | 33.9 | 71     | 35.7    | 74       | 5   | 68-98/23  |
| 129-00-0  | Pyrene                 | 0.96 U   | 48.1  | 35.9 | 75     | 36.5    | 76       | 2   | 66-102/25 |
|           |                        |          |       |      |        |         |          |     |           |
| CAS No.   | Surrogate Recoveries   | MS       | MSD   | F5'  | 7465-6 | Limits  |          |     |           |
| 4165-60-0 | Nitrobenzene-d5        | 59%      | 66%   | 689  | %      | 42-108% | ó        |     |           |
| 321-60-8  | 2-Fluorobiphenyl       | 60%      | 65%   | 669  | %      | 40-106% | ó        |     |           |
| 1718-51-0 | Terphenyl-d14          | 64%      | 67%   | 479  | %      | 39-121% | <b>б</b> |     |           |



#### Matrix Spike/Matrix Spike Duplicate Summary

Job Number: F57467

Account: **TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL Project:

| Sample<br>OP25106-MS<br>OP25106-MSD<br>F57485-3 | File ID<br>W040629.D<br>W040630.D<br>W040628.D | 1 | Analyzed<br>05/20/08<br>05/20/08<br>05/20/08 | By<br>RB<br>RB<br>RB | Prep Date 05/19/08 05/19/08 05/19/08 | Prep Batch<br>OP25106<br>OP25106<br>OP25106 | Analytical Batch<br>SW2081<br>SW2081<br>SW2081 |
|-------------------------------------------------|------------------------------------------------|---|----------------------------------------------|----------------------|--------------------------------------|---------------------------------------------|------------------------------------------------|
|                                                 |                                                |   |                                              |                      |                                      |                                             |                                                |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-6, F57467-7

|           |                        | F57485-3 | Spike | MS   | MS     | MSD     | MSD        |     | Limits    |
|-----------|------------------------|----------|-------|------|--------|---------|------------|-----|-----------|
| CAS No.   | Compound               | ug/l Q   | ug/l  | ug/l | %      | ug/l    | %          | RPD | Rec/RPD   |
| 83-32-9   | Acenaphthene           | 0.96 U   | 48.1  | 29.7 | 62     | 30.8    | 64         | 4   | 60-94/25  |
| 208-96-8  | Acenaphthylene         | 0.96 U   | 48.1  | 30.3 | 63     | 31.5    | 66         | 4   | 60-92/24  |
| 120-12-7  | Anthracene             | 0.96 U   | 48.1  | 32.9 | 68*    | 34.3    | 71         | 4   | 69-98/19  |
| 56-55-3   | Benzo(a)anthracene     | 0.19 U   | 4.81  | 3.5  | 73     | 3.6     | <b>7</b> 5 | 3   | 65-102/23 |
| 50-32-8   | Benzo(a)pyrene         | 0.19 U   | 4.81  | 3.8  | 79     | 3.8     | 79         | 0   | 74-106/23 |
| 205-99-2  | Benzo(b)fluoranthene   | 0.19 U   | 4.81  | 3.6  | 75     | 3.7     | 77         | 3   | 71-104/24 |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.19 U   | 4.81  | 3.4  | 71     | 3.4     | 71         | 0   | 60-104/22 |
| 207-08-9  | Benzo(k)fluoranthene   | 0.19 U   | 4.81  | 3.5  | 73     | 3.6     | 75         | 3   | 70-104/22 |
| 218-01-9  | Chrysene               | 0.19 U   | 4.81  | 3.5  | 73     | 3.6     | 75         | 3   | 69-104/21 |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.19 U   | 4.81  | 3.5  | 73     | 3.5     | 73         | 0   | 63-107/21 |
| 206-44-0  | Fluoranthene           | 0.96 U   | 48.1  | 34.6 | 72     | 35.2    | 73         | 2   | 70-99/23  |
| 86-73-7   | Fluorene               | 0.96 U   | 48.1  | 32.3 | 67     | 33.4    | 69         | 3   | 62-95/25  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.19 U   | 4.81  | 3.5  | 73     | 3.5     | 73         | 0   | 63-107/24 |
| 90-12-0   | 1-Methylnaphthalene    | 0.96 U   | 48.1  | 29.3 | 61     | 30.3    | 63         | 3   | 57-94/26  |
| 91-57-6   | 2-Methylnaphthalene    | 0.96 U   | 48.1  | 27.4 | 57*    | 28.1    | 58         | 3   | 58-90/23  |
| 91-20-3   | Naphthalene            | 0.96 U   | 48.1  | 28.7 | 60     | 29.4    | 61         | 2   | 58-92/23  |
| 85-01-8   | Phenanthrene           | 0.96 U   | 48.1  | 31.4 | 65*    | 32.7    | 68         | 4   | 68-98/23  |
| 129-00-0  | Pyrene                 | 0.96 U   | 48.1  | 32.7 | 68     | 33.8    | 70         | 3   | 66-102/25 |
|           |                        |          |       |      |        |         |            |     |           |
| CAS No.   | Surrogate Recoveries   | MS       | MSD   | F5'  | 7485-3 | Limits  |            |     |           |
| 4165-60-0 | Nitrobenzene-d5        | 60%      | 62%   | 719  | %      | 42-108% | ,<br>o     |     |           |
| 321-60-8  | 2-Fluorobiphenyl       | 52%      | 62%   | 619  | %      | 40-106% | ó          |     |           |
| 1718-51-0 | Terphenyl-d14          | 63%      | 65%   | 759  | %      | 39-121% | ó ·        |     |           |



Blank Spike Summary Job Number: F57467

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

| Sample     | File ID  | DF | Analyzed | By | Prep Date 05/14/08 | Prep Batch | Analytical Batch |
|------------|----------|----|----------|----|--------------------|------------|------------------|
| OP25062-BS | R13713.D | 1  | 05/15/08 | RB |                    | OP25062    | SR636            |
|            |          |    |          |    |                    |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5

| CAS No.   | Compound               | Spike<br>ug/l | BSP<br>ug/l | BSP<br>% | Limits |
|-----------|------------------------|---------------|-------------|----------|--------|
| 83-32-9   | Acenaphthene           | 25            | 19.1        | 76       | 60-94  |
| 208-96-8  | Acenaphthylene         | 25            | 18.6        | 74       | 60-92  |
| 120-12-7  | Anthracene             | 25            | 19.4        | 78       | 69-98  |
| 56-55-3   | Benzo(a)anthracene     | 2.5           | 1.9         | 76       | 65-102 |
| 50-32-8   | Benzo(a)pyrene         | 2.5           | 2.0         | 80       | 74-106 |
| 205-99-2  | Benzo(b)fluoranthene   | 2.5           | 2.0         | 80       | 71-104 |
| 191-24-2  | Benzo(g,h,i)perylene   | 2.5           | 2.1         | 84       | 60-104 |
| 207-08-9  | Benzo(k)fluoranthene   | 2.5           | 2.0         | 80       | 70-104 |
| 218-01-9  | Chrysene               | 2.5           | 2.0         | 80       | 69-104 |
| 53-70-3   | Dibenzo(a,h)anthracene | 2.5           | 2.0         | 80       | 63-107 |
| 206-44-0  | Fluoranthene           | 25            | 20.6        | 82       | 70-99  |
| 86-73-7   | Fluorene               | 25            | 19.7        | 79       | 62-95  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 2.5           | 1.9         | 76       | 63-107 |
| 90-12-0   | 1-Methylnaphthalene    | 25            | 20.1        | 80       | 57-94  |
| 91-57-6   | 2-Methylnaphthalene    | 25            | 18.2        | 73       | 58-90  |
| 91-20-3   | Naphthalene            | 25            | 19.3        | 77       | 58-92  |
| 85-01-8   | Phenanthrene           | 25            | 19.1        | 76       | 68-98  |
| 129-00-0  | Pyrene                 | 25            | 19.7        | 79       | 66-102 |
|           |                        |               |             |          |        |
| CAS No.   | Surrogate Recoveries   | BSP           | Liı         | mits     |        |
| 4165-60-0 | Nitrobenzene-d5        | 65%           | 42          | -108%    |        |
| 321-60-8  | 2-Fluorobiphenyl       | 65%           | 40          | -106%    |        |
| 1718-51-0 | Terphenyl-d14          | 67%           | 39-         | -121%    |        |



Blank Spike Summary Job Number: F57467

Account:

TETRPAPT Tetra Tech NUS

Project: NAS Key West, Key West, FL

| Sample         File ID         DF         Analyzed         By         Prep Date           OP25106-BS         W040625.D         1         05/20/08         RB         05/19/08 | Prep Batch<br>OP25106 | Analytical Batch<br>SW2081 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-6, F57467-7

|           |                        | Spike | BSP  | BSP              |        |
|-----------|------------------------|-------|------|------------------|--------|
| CAS No.   | Compound               | ug/l  | ug/l | %                | Limits |
|           |                        |       |      | and the Section  |        |
| 83-32-9   | Acenaphthene           | 25    | 17.5 | 70               | 60-94  |
| 208-96-8  | Acenaphthylene         | 25    | 18.2 | 73               | 60-92  |
| 120-12-7  | Anthracene             | 25    | 18.8 | 75               | 69-98  |
| 56-55-3   | Benzo(a)anthracene     | 2.5   | 1.9  | 76               | 65-102 |
| 50-32-8   | Benzo(a)pyrene         | 2.5   | 2.0  | 80               | 74-106 |
| 205-99-2  | Benzo(b)fluoranthene   | 2.5   | 2.0  | 80               | 71-104 |
| 191-24-2  | Benzo(g,h,i)perylene   | 2.5   | 1.9  | 76               | 60-104 |
| 207-08-9  | Benzo(k)fluoranthene   | 2.5   | 1.9  | 76               | 70-104 |
| 218-01-9  | Chrysene               | 2.5   | 1.9  | 76               | 69-104 |
| 53-70-3   | Dibenzo(a,h)anthracene | 2.5   | 1.9  | 76               | 63-107 |
| 206-44-0  | Fluoranthene           | 25    | 19.2 | 77               | 70-99  |
| 86-73-7   | Fluorene               | 25    | 18.9 | 76               | 62-95  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 2.5   | 1.9  | 76               | 63-107 |
| 90-12-0   | 1-Methylnaphthalene    | 25    | 17.1 | 68               | 57-94  |
| 91-57-6   | 2-Methylnaphthalene    | 25    | 16.0 | 64               | 58-90  |
| 91-20-3   | Naphthalene            | 25    | 16.8 | 67               | 58-92  |
| 85-01-8   | Phenanthrene           | 25    | 18.0 | 72               | 68-98  |
| 129-00-0  | Pyrene                 | 25    | 18.6 | 74               | 66-102 |
|           |                        |       |      | estates estates. | 112    |
|           |                        |       |      |                  |        |
| CAS No.   | Surrogate Recoveries   | BSP   | Liı  | mits             |        |
| 4165-60-0 | Nitrobenzene-d5        | 69%   | 42-  | -108%            |        |
| 321-60-8  | 2-Fluorobiphenyl       | 60%   | 40-  | -106%            |        |
| 1718-51-0 | Terphenyl-d14          | 69%   | 39-  | -121%            |        |



Job Number:

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample OP25062-MB

File ID R13714.D

F57467

DF 1 Analyzed 05/15/08

By RB Prep Date 05/14/08

Prep Batch OP25062 Analytical Batch

SR636

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5

| CAS No.  | Compound               | Result | RL   | MDL   | Units Q |
|----------|------------------------|--------|------|-------|---------|
| 83-32-9  | Acenaphthene           | ND     | 1.0  | 0.50  | ug/l    |
| 208-96-8 | Acenaphthylene         | ND     | 1.0  | 0.50  | ug/l    |
| 120-12-7 | Anthracene             | ND     | 1.0  | 0.50  | ug/l    |
| 56-55-3  | Benzo(a)anthracene     | ND     | 0.20 | 0.050 | ug/l    |
| 50-32-8  | Benzo(a)pyrene         | ND     | 0.20 | 0.10  | ug/l    |
| 205-99-2 | Benzo(b)fluoranthene   | ND     | 0.20 | 0.050 | ug/l    |
| 191-24-2 | Benzo(g,h,i)perylene   | ND     | 0.20 | 0.10  | ug/l    |
| 207-08-9 | Benzo(k)fluoranthene   | ND     | 0.20 | 0.10  | ug/l    |
| 218-01-9 | Chrysene               | ND     | 0.20 | 0.10  | ug/l    |
| 53-70-3  | Dibenzo(a,h)anthracene | ND     | 0.20 | 0.050 | ug/l    |
| 206-44-0 | Fluoranthene           | ND     | 1.0  | 0.25  | ug/l    |
| 86-73-7  | Fluorene               | ND     | 1.0  | 0.25  | ug/l    |
| 193-39-5 | Indeno(1,2,3-cd)pyrene | ND     | 0.20 | 0.050 | ug/l    |
| 90-12-0  | 1-Methylnaphthalene    | ND     | 1.0  | 0.25  | ug/l    |
| 91-57-6  | 2-Methylnaphthalene    | ND     | 1.0  | 0.25  | ug/l    |
| 91-20-3  | Naphthalene            | ND     | 1.0  | 0.25  | ug/l    |
| 85-01-8  | Phenanthrene           | ND     | 1.0  | 0.50  | ug/l    |
| 129-00-0 | Pyrene                 | ND     | 1.0  | 0.25  | ug/l    |
|          |                        |        |      |       | -       |

4165-60-0 Nitrobenzene-d5 321-60-8 2-Fluorobiphenyl 1718-51-0 Terphenyl-d14

Surrogate Recoveries

CAS No.

64% 42-108% 66% 40-106% 69% 39-121%

Limits

7.1

### Method Blank Summary Job Number: F57467

Account:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Project:

Analytical Batch Sample File ID DF Analyzed Ву Prep Date Prep Batch OP25062-MB R13743.D 05/16/08 RB 05/14/08 OP25062 SR637 1

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5

| CAS No.   | Compound               | Result | RL    | MDL   | Units | Q |
|-----------|------------------------|--------|-------|-------|-------|---|
| 83-32-9   | Acenaphthene           | ND     | 1.0   | 0.50  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | ND     | 1.0   | 0.50  | ug/l  |   |
| 120-12-7  | Anthracene             | ND     | 1.0   | 0.50  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | ND     | 0.20  | 0.050 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | ND     | 0.20  | 0.10  | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | ND     | 0.20  | 0.050 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | ND     | 0.20  | 0.10  | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | ND     | 0.20  | 0.10  | ug/l  |   |
| 218-01-9  | Chrysene               | ND     | 0.20  | 0.10  | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | ND     | 0.20  | 0.050 | ug/l  |   |
| 206-44-0  | Fluoranthene           | ND     | 1.0   | 0.25  | ug/l  |   |
| 86-73-7   | Fluorene               | ND     | 1.0   | 0.25  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | ND     | 0.20  | 0.050 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | ND     | 1.0   | 0.25  | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene    | ND     | 1.0   | 0.25  | ug/l  |   |
| 91-20-3   | Naphthalene            | ND     | 1.0   | 0.25  | ug/l  |   |
| 85-01-8   | Phenanthrene           | ND     | 1.0   | 0.50  | ug/l  |   |
| 129-00-0  | Pyrene                 | ND     | 1.0   | 0.25  | ug/l  |   |
|           |                        |        |       |       |       |   |
| CAS No.   | Surrogate Recoveries   |        | Limit | s     |       |   |
| 4165-60-0 | Nitrobenzene-d5        | 65%    | 42-10 | 8%    |       |   |
| 321-60-8  | 2-Fluorobiphenyl       | 60%    | 40-10 | 6%    |       |   |
| 1718-51-0 | Ternhenyl-d14          | 72%    | 39-12 |       |       |   |



### Method Blank Summary Job Number: F57467

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

DF

Sample OP25106-MB File ID W040624.D 1

Analyzed 05/20/08

By RB Prep Date 05/19/08

Prep Batch OP25106

**Analytical Batch** 

Page 1 of 1

SW2081

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-6, F57467-7

| Compound               | Result                                                                                                                                                                                                                                                                                                               | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acenaphthene           | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Acenaphthylene         | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Anthracene             | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(a)anthracene     | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(a)pyrene         | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(b)fluoranthene   | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(g,h,i)perylene   | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Benzo(k)fluoranthene   | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Chrysene               | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dibenzo(a,h)anthracene | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fluoranthene           | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Fluorene               | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Indeno(1,2,3-cd)pyrene | ND                                                                                                                                                                                                                                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-Methylnaphthalene    | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Naphthalene            | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Phenanthrene           | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Pyrene                 | ND                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Surrogate Recoveries   | •                                                                                                                                                                                                                                                                                                                    | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Nitrobenzene-d5        | 62%                                                                                                                                                                                                                                                                                                                  | 42-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2-Fluorobiphenyl       | 53%                                                                                                                                                                                                                                                                                                                  | 40-106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | 68%                                                                                                                                                                                                                                                                                                                  | 39-121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene 2-Methylnaphthalene Naphthalene Phenanthrene Pyrene  Surrogate Recoveries  Nitrobenzene-d5 | Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene ND Indeno(1,2,3-cd)pyrene 1-Methylnaphthalene ND Naphthalene ND Naphthalene ND Naphthalene ND Naphthalene ND ND ND Naphthalene ND ND ND Naphthalene ND | Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene Benzo(k)fluora | Acenaphthene ND 1.0 0.50 Acenaphthylene ND 1.0 0.50 Anthracene ND 1.0 0.50 Benzo (a) anthracene ND 0.20 0.050 Benzo (b) fluoranthene ND 0.20 0.10 Benzo (b) fluoranthene ND 0.20 0.10 Benzo (g, h, i) perylene ND 0.20 0.10 Benzo (k) fluoranthene ND 0.20 0.10 Chrysene ND 0.20 0.10 Chrysene ND 0.20 0.10 Dibenzo (a, h) anthracene ND 0.20 0.50 Fluoranthene ND 1.0 0.25 Fluorene ND 1.0 0.25 Indeno (1, 2, 3-cd) pyrene ND 0.20 0.050 1-Methylnaphthalene ND 1.0 0.25 Naphthalene ND 1.0 0.25 Naphthalene ND 1.0 0.25 Naphthalene ND 1.0 0.25 Surrogate Recoveries Limits  Nitrobenzene-d5 62% 42-108% 2-Fluorobiphenyl 53% 40-106% | Acenaphthene ND 1.0 0.50 ug/l Acenaphthylene ND 1.0 0.50 ug/l Benzo(a)anthracene ND 0.20 0.050 ug/l Benzo(a)pyrene ND 0.20 0.050 ug/l Benzo(b)fluoranthene ND 0.20 0.050 ug/l Benzo(g,h,i)perylene ND 0.20 0.10 ug/l Benzo(k)fluoranthene ND 0.20 0.10 ug/l Benzo(k)fluoranthene ND 0.20 0.10 ug/l Benzo(k)fluoranthene ND 0.20 0.10 ug/l Benzo(a,h)anthracene ND 0.20 0.10 ug/l Dibenzo(a,h)anthracene ND 0.20 0.050 ug/l Fluoranthene ND 1.0 0.25 ug/l Fluorene ND 1.0 0.25 ug/l Indeno(1,2,3-cd)pyrene ND 0.20 0.050 ug/l 1-Methylnaphthalene ND 1.0 0.25 ug/l 2-Methylnaphthalene ND 1.0 0.25 ug/l Naphthalene ND 1.0 0.25 ug/l Phenanthrene ND 1.0 0.25 ug/l Surrogate Recoveries Limits  Nitrobenzene-d5 62% 42-108% 2-Fluorobiphenyl 53% 40-106% |



### Method Blank Summary Job Number: F57467

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

Sample OP25106-MB

File ID DF W040672.D 1

Analyzed 05/21/08

Ву RB Prep Date 05/19/08

Prep Batch OP25106

Analytical Batch

SW2082

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57467-6, F57467-7

| CAS No.                            | Compound                                             | Result            | RL                      | MDL   | Units Q |
|------------------------------------|------------------------------------------------------|-------------------|-------------------------|-------|---------|
| 83-32-9                            | Acenaphthene                                         | ND                | 1.0                     | 0.50  | ug/l    |
| 208-96-8                           | Acenaphthylene                                       | ND                | 1.0                     | 0.50  | ug/l    |
| 120-12-7                           | Anthracene                                           | ND                | 1.0                     | 0.50  | ug/l    |
| 56-55-3                            | Benzo(a)anthracene                                   | ND                | 0.20                    | 0.050 | ug/l    |
| 50-32-8                            | Benzo(a)pyrene                                       | ND                | 0.20                    | 0.10  | ug/l    |
| 205-99-2                           | Benzo(b)fluoranthene                                 | ND                | 0.20                    | 0.050 | ug/l    |
| 191-24-2                           | Benzo(g,h,i)perylene                                 | ND                | 0.20                    | 0.10  | ug/l    |
| 207-08-9                           | Benzo(k)fluoranthene                                 | ND                | 0.20                    | 0.10  | ug/l    |
| 218-01-9                           | Chrysene                                             | ND                | 0.20                    | 0.10  | ug/l    |
| 53-70-3                            | Dibenzo(a,h)anthracene                               | ND                | 0.20                    | 0.050 | ug/l    |
| 206-44-0                           | Fluoranthene                                         | ND                | 1.0                     | 0.25  | ug/l    |
| 86-73-7                            | Fluorene                                             | ND                | 1.0                     | 0.25  | ug/l    |
| 193-39-5                           | Indeno(1,2,3-cd)pyrene                               | ND                | 0.20                    | 0.050 | ug/l    |
| 90-12-0                            | 1-Methylnaphthalene                                  | ND                | 1.0                     | 0.25  | ug/l    |
| 91-57-6                            | 2-Methylnaphthalene                                  | ND                | 1.0                     | 0.25  | ug/l    |
| 91-20-3                            | Naphthalene                                          | ND                | 1.0                     | 0.25  | ug/l    |
| 85-01-8                            | Phenanthrene                                         | ND                | 1.0                     | 0.50  | ug/l    |
| 129-00-0                           | Pyrene                                               | ND                | 1.0                     | 0.25  | ug/l    |
|                                    |                                                      |                   |                         |       |         |
| CAS No.                            | Surrogate Recoveries                                 |                   | Limit                   | S     |         |
| 4165-60-0<br>321-60-8<br>1718-51-0 | Nitrobenzene-d5<br>2-Fluorobiphenyl<br>Terphenyl-d14 | 57%<br>60%<br>66% | 42-10<br>40-10<br>39-12 | 6%    |         |





Instrument Performance Check (DFTPP)

Job Number: F57467

Account: TETRPAPT Tetra Tech NUS Project: NAS Key West, Key West, FL

Sample: Lab File ID: SR633-DFTPP R13677.D

Injection Date: 05/12/08 Injection Time: 16:06

Instrument ID: GCMSR

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative Abundance     | Pass/Fail |
|-----|------------------------------------|------------------|--------------------------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 81069            | 41.5                     | Pass      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0 (0.0) a              | Pass      |
| 69  | Mass 69 relative abundance         | 86473            | 44.2                     | Pass      |
| 70  | Less than 2.0% of mass 69          | 228              | 0.12 (0.26) a            | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 91866            | 47.0                     | Pass      |
| 197 | Less than 1.0% of mass 198         | . 0              | 0.0                      | Pass      |
| 198 | Base peak, 100% relative abundance | 195458           | 100.0                    | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 13349            | 6.8                      | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 55120            | 28.2                     | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 6503             | 3.3                      | Pass      |
| 441 | Present, but less than mass 443    | 25922            | 13.3 (80.4) b            | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | 169421           | 86.7                     | Pass      |
| 443 | 17.0 - 23.0% of mass 442           | 32225            | 16.5 (19.0) <sup>c</sup> | Pass      |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID        |
|------------------|----------------|------------------|------------------|-----------------|----------------------------|
| bampic 1D        | THE ID         | Anaiyzou         | Analyzed         | Lapsed          | Sample 1D                  |
| SR633-IC633      | R13678.D       | 05/12/08         | 16:22            | 00:16           | Initial cal 1              |
| SR633-IC633      | R13679.D       | 05/12/08         | 16:49            | 00:43           | Initial cal 2              |
| SR633-IC633      | R13680.D       | 05/12/08         | 17:15            | 01:09           | Initial cal 3              |
| SR633-ICC633     | R13681.D       | 05/12/08         | 17:42            | 01:36           | Initial cal 4              |
| SR633-IC633      | R13682.D       | 05/12/08         | 18:08            | 02:02           | Initial cal 5              |
| SR633-IC633      | R13683.D       | 05/12/08         | 18:35            | 02:29           | Initial cal 6              |
| SR633-IC633      | R13684.D       | 05/12/08         | 19:01            | 02:55           | Initial cal 7              |
| SR633-ICV633     | R13685.D       | 05/12/08         | 19:28            | 03:22           | Initial cal verification 4 |
| SR633-ICV633     | R13686.D       | 05/12/08         | 19:54            | 03:48           | Initial cal verification 4 |



**Initial Calibration Summary** 

Job Number: F57467 TETRPAPT Tetra Tech NUS Account:

NAS Key West, Key West, FL Project:

Page 1 of 2

SR633-ICC633 Sample: R13681.D Lab FileID:

Response Factor Report MSBNA3

: C:\msdchem\1\METHODS\SIM PAH3.M (RTE Integrator) Method

: PAH's by 8270 SIM

Last Update : Thu May 15 08:54:43 2008 Response via : Initial Calibration

Calibration Files
L2 =R13679.D T.3 =R13680 D

|      | =R13678.D<br>=R13682.D                      | L2<br>L6      | =R1367:<br>=R1368. | 9.D<br>3.D | L3 = L7 = | R13680<br>R13684 | .D I     | 54 =<br>icv = | R13681.D  |       |             |
|------|---------------------------------------------|---------------|--------------------|------------|-----------|------------------|----------|---------------|-----------|-------|-------------|
|      | ompound                                     |               |                    |            |           |                  |          |               |           | Avg   | %RSD        |
|      |                                             |               |                    |            |           |                  |          |               |           |       |             |
| 1 \  | I Naphthal                                  | ana do        |                    |            |           |                  | T C TI D |               |           |       |             |
| 2 N  | Nitrobenzene                                | ene-uo<br>259 | 0 371              | n 374      | n 381     | <br>             | U 306    | n 39          | 18 (      | 381   | 3.64        |
|      |                                             |               |                    |            |           |                  |          |               |           |       |             |
| 4)   | Naphthalene                                 | 1.219         | 1.247              | 1.233      | 1.220     | 1.184            | 1.108    | 1.08          | 1         | 1.184 | 5.48        |
| 5)   | N-nitroso-di<br>Naphthalene<br>2-Methylnaph | 0.772         | 0.797              | 0.798      | 0.796     | 0.778            | 0.752    | 0.74          | 8 (       | 777   | 2.70        |
| 6)   | 1-Methylnaph                                | 0.701         | 0.729              | 0.724      | 0.728     | 0.709            | 0.690    | 0.69          | 4 (       | 711   | 2.30        |
| 7)   | I Acenapht                                  | hene-d        | 10                 |            |           |                  | T S.T.D  |               |           |       | =           |
| 8)   | Hexachlorocy                                | nene u        | 0.321              | 0.365      | 0.389     | 0.401            | 0.400    | 0.38          | 5 (       | 377   | 8.03        |
|      | 2-Fluorobiph                                |               |                    |            |           |                  |          |               |           | 1.762 | 1.35        |
|      | Acenaphthyle                                |               |                    |            |           |                  |          |               |           | 2.385 | 4.50        |
|      | Acenaphthene                                |               |                    |            |           |                  |          |               |           | 1.464 |             |
| 12)  | 2,4-Dinitrop                                |               | 0.160              | 0.222      | 0.244     | 0.270            | 0.314    | 0.32          | 3 (       | .256  |             |
| 13)  | 4-Nitropheno                                |               | 0.296              | 0.323      | 0.338     | 0.346            | 0.374    | 0.36          | 1 (       |       | 8.11        |
|      | Fluorene                                    |               |                    |            |           |                  |          |               |           |       | 3.69        |
|      |                                             |               |                    |            |           |                  |          |               |           |       |             |
| 15)  | I Phenanth:                                 | rene-d        | .10                |            |           |                  | ISTD     | 0 10          |           |       | - 0.76      |
| 16)  | 2,4,6-Tribro<br>Pentachlorop                | 0.097         | 0.104              | 0.111      | 0.11/     | 0.118            | 0.122    | 0.12          | 5 (       | ).II3 | 8./6        |
| Ι/)  | rentachiorop                                | 0.091         | 0.113              | 0.142      | 0.162     | 0.188            | U.187    | U.19          | cient =   | 0.154 | 23.38<br>23 |
|      |                                             |               |                    |            |           |                  |          |               | 0166 *A^2 |       | ,,          |
|      | 1.0.                                        | opomec        | 110010             | 0.0        |           | 0.170            | , 0 11 . |               | 0100 11 2 | -     |             |
| 18)  | Phenanthrene                                | 1.440         | 1.489              | 1.455      | 1.443     | 1.396            | 1.357    | 1.35          | 2         | 1.419 | 3.64        |
|      | Anthracene                                  |               |                    |            |           |                  |          |               |           | 1.434 | 4.40        |
| 20)  | Fluoranthene                                | 1.433         | 1.507              | 1.491      | 1.483     | 1.430            | 1.400    | 1.38          | 4         | 1.447 | 3.28        |
| 211  | I Chrysene                                  | - 41.0        |                    |            |           |                  | T C M D  |               |           |       |             |
|      | I Chrysene                                  | -aiz<br>1 005 | 2 110              | 2 064      | 2 004     | 1 0/0            | 1 000    | 1 00          | E 1       | 000   | 4.62        |
| 22)  | Pyrene<br>Terphenyl-dl                      | 070           | 1 042              | 1 050      | 1 005     | 1 0/0            | 1 030    | 1 00          | 2 1       | 039   | 3.08        |
| 2/11 | Benzo[a]anth                                | 1 5/18        | 1 547              | 1 51/      | 1 568     | 1 570            | 1 644    | 1.05          | 2 1       | 579   | 3.06        |
| 25)  | Chrysene                                    | 1.453         | 1.516              | 1.529      | 1.551     | 1.552            | 1.577    | 1.58          | 5 1       | .537  | 2.89        |
| 20,  | onrybene                                    | 1.100         | 1.010              |            | 1.001     | 1.002            | 1.077    | 1.00          | _         |       | 2.05        |
|      | I Perylene                                  |               |                    |            |           |                  |          |               |           |       |             |
|      | Benzo[b]fluo                                |               |                    |            |           |                  |          |               |           |       |             |
| 28)  | Benzo[k]fluo<br>Benzo[a]pyre                | 1.273         | 1.409              | 1.512      | 1.582     | 1.627            | 1.680    | 1.70          | 3 1       | 541   | 10.07       |
| 29)  | Benzo[a]pyre                                | 0.941         | 1.062              | 1.172      | 1.259     | 1.316            | 1.402    | 1.41          | 6 1       | 224   | 14.42       |
| 30)  | Indeno[1,2,3                                | 0.671         | 0.729              | 0.825      | 0.881     | 0.982            | 1.087    | 1.09          | 9 (       | .896  | 18.71       |
|      |                                             | Quadr         | atic re            | egr., E    | Force(    | 0,0)             | Cc       | effi          | cient =   |       | 96          |
|      | Res                                         | sponse        | Ratio              | = 0.00     | 1000 +    | 0.8929           | 9⊥ *A +  | - 0.1         | 7282 *A^2 | 2     |             |
| 31)  | Dibenz[a,h]a                                | 0.652         | 0.720              | 0.820      | 0.849     | 0.977            | 1.064    | 1.09          | 3 (       | .882  | 19.14       |
| 01/  |                                             |               |                    |            |           |                  |          |               | cient =   |       |             |
|      |                                             |               |                    |            |           |                  |          |               | 8436 *A^2 |       |             |
| 20:  |                                             | 0 050         |                    | 1 00-      |           | 1 100            | 1 0 1 0  |               |           |       |             |
| 32)  | Benzo[g,h,i]                                | 0.953<br>     | 1.019              | 1.095      | 1.109     | 1.180            | 1.248    | 1.26          | 3 1<br>   | 124   | 10.21       |
|      |                                             |               |                    |            |           |                  |          |               | <b></b>   |       |             |



Initial Calibration Summary

Job Number: F57467
Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

Sample: Lab FileID:

Page 2 of 2 SR633-ICC633

R13681.D

(#) = Out of Range ### Number of calibration levels exceeded format ###

SIM PAH3.M

Thu May 15 08:55:25 2008

#### Instrument Performance Check (DFTPP)

Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample: Lab File ID: SR636-DFTPP R13711.D

Injection Date: 05/15/08 Injection Time: 12:00

Instrument ID: GCMSR

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relati<br>Abundai |          | Pass/Fail |
|-----|------------------------------------|------------------|---------------------|----------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 73632            | 41.7                |          | Pass      |
| 68  | Less than 2.0% of mass 69          | 314              | 0.18                | (0.4) a  | Pass      |
| 69  | Mass 69 relative abundance         | 77901            | 44.1                |          | Pass      |
| 70  | Less than 2.0% of mass 69          | 395              | 0.22                | (0.51) a | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 84581            | 47.9                |          | Pass      |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                 |          | Pass      |
| 198 | Base peak, 100% relative abundance | 176602           | 100.0               |          | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 11828            | 6.7                 |          | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 50717            | 28.7                |          | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 5991             | 3.4                 |          | Pass      |
| 441 | Present, but less than mass 443    | 24440            | 13.8                | (81.5) b | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | 157760           | 89.3                |          | Pass      |
| 443 | 17.0 - 23.0% of mass 442           | 29977            | 17.0                | (19.0) c | Pass      |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab         | Lab      | Date     | Time     | Hours  | Client                                     |
|-------------|----------|----------|----------|--------|--------------------------------------------|
| Sample ID   | File ID  | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|             |          |          |          |        |                                            |
| SR636-CC633 | R13712.D | 05/15/08 | 12:17    | 00:17  | Continuing cal 4                           |
| OP25062-BS  | R13713.D | 05/15/08 | 12:50    | 00:50  | Blank Spike                                |
| OP25062-MB  | R13714.D | 05/15/08 | 13:17    | 01:17  | Method Blank                               |
| ZZZZZZ      | R13715.D | 05/15/08 | 13:48    | 01:48  | (unrelated sample)                         |
| ZZZZZZ      | R13716.D | 05/15/08 | 14:14    | 02:14  | (unrelated sample)                         |
| ZZZZZZ      | R13718.D | 05/15/08 | 15:14    | 03:14  | (unrelated sample)                         |
| ZZZZZZ      | R13720.D | 05/15/08 | 16:13    | 04:13  | (unrelated sample)                         |
| ZZZZZZ      | R13721.D | 05/15/08 | 16:40    | 04:40  | (unrelated sample)                         |
| ZZZZZZ      | R13722.D | 05/15/08 | 17:06    | 05:06  | (unrelated sample)                         |
| ZZZZZZ      | R13723.D | 05/15/08 | 17:35    | 05:35  | (unrelated sample)                         |
| ZZZZZZ      | R13724.D | 05/15/08 | 18:02    | 06:02  | (unrelated sample)                         |
| ZZZZZZ      | R13725.D | 05/15/08 | 18:28    | 06:28  | (unrelated sample)                         |
| F57465-6    | R13726.D | 05/15/08 | 18:55    | 06:55  | (used for QC only; not part of job F57467) |
| OP25062-MS  | R13727.D | 05/15/08 | 19:22    | 07:22  | Matrix Spike                               |
| OP25062-MSD | R13728.D | 05/15/08 | 19:49    | 07:49  | Matrix Spike Duplicate                     |
| ZZZZZZ      | R13729.D | 05/15/08 | 20:16    | 08:16  | (unrelated sample)                         |
| ZZZZZZ      | R13733.D | 05/15/08 | 22:02    | 10:02  | (unrelated sample)                         |
| F57467-1    | R13734.D | 05/15/08 | 22:29    | 10:29  | KWSM-FD-01-0508                            |
| F57467-2    | R13735.D | 05/15/08 | 22:55    | 10:55  | KWSMMW-04-0508                             |
|             |          |          |          |        |                                            |



Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample: Lab File ID: SR636-DFTPP R13711.D

Injection Date: 05/15/08

Injection Time: 12:00

Instrument ID: GCMSR

| Lab       | Lab      | Date     | Time     | Hours  | Client         |
|-----------|----------|----------|----------|--------|----------------|
| Sample ID | File ID  | Analyzed | Analyzed | Lapsed | Sample ID      |
| F57467-3  | R13736.D | 05/15/08 | 23:22    | 11:22  | KWSMMW-05-0508 |
| F57467-4  | R13737.D | 05/15/08 | 23:49    | 11:49  | KWSMMW-06-0508 |

Continuing Calibration Summary Job Number: F57467

TETRPAPT Tetra Tech NUS

Sample:

Page 1 of 1 SR636-CC633

Lab FileID: R13712.D

Account: Project:

NAS Key West, Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\051508a\R13712.D

Vial: 2

Acq On : 15 May 2008 12:17 pm

Operator: rayb Inst : MSBNA3

Sample : cc633-4 Misc : op25062,sr636,1000,,,1,1,water

Multiplr: 1.00

Method

MS Integration Params: RTEINT.P

: C:\msdchem\1\METHODS\SIM PAHC.M (RTE Integrator)

: C:\msuchem\.\_...
: PAH's by 8270 SIM

Last Update : Thu May 15 14:05:52 2008 Response via : Multiple Level Calibration

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

|      | Compound                          | AvgRF | CCRF  | %Dev A | rea%   | Dev(m | in)R.T. |
|------|-----------------------------------|-------|-------|--------|--------|-------|---------|
| 1 I  | Naphthalene-d8                    | 1.000 | 1.000 | 0.0    | 57     | 0.00  | 5.78    |
| 2 S  | Nitrobenzene-d5                   | 0.391 | 0.385 | 1.5    | 56     | 0.00  | 5.13    |
| 3 P  | N-nitroso-di-n-propylamin         | 0.139 | 0.137 | 1.4    | 56     | 0.00  | 5.01    |
| 4    | Naphthalene                       | 1.194 | 1.268 | -6.2   | 58     | 0.00  | 5.80    |
| 5    | 2-Methylnaphthalene               | 0.791 | 0.826 | -4.4   | 58     | 0.00  | 6.56    |
| 6    | 1-Methylnaphthalene               | 0.723 | 0.762 | -5.4   | 58     | 0.00  | 6.68    |
| 7 I  | Acenaphthene-d10                  | 1.000 | 1.000 | 0.0    | 58     | 0.00  | 7.98    |
| 8 P  | Hexachlorocyclopentadiene         | 0.336 | 0.331 | 1.5    | 56     | 0.00  | 6.75    |
| 9 S  | 2-Fluorobiphenyl                  | 1.885 | 1.915 | -1.6   | 59     | 0.00  | 7.04    |
| 10   | Acenaphthylene                    | 2.456 | 2.535 | -3.2   | 58     | 0.00  | 7.76    |
| 11 C | Acenaphthene ·                    | 1.514 | 1.543 | -1.9   | 58     | 0.00  | 8.03    |
| 12 P | 2,4-Dinitrophenol                 | 0.230 | 0.172 | 25.2#  | 44#    | 0.00  | 8.13    |
| 13 P | 4-Nitrophenol                     | 0.318 | 0.283 | 11.0   | 53     | 0.00  | 8.29    |
| 14   | Fluorene                          | 1.590 | 1.639 | -3.1   | 58     | 0.00  | 8.85    |
| 15 I | Phenanthrene-d10                  | 1.000 | 1.000 | 0.0    | 59     | 0.00  | 10.46   |
| 16   | Phenanthrene                      | 1.466 | 1.491 | -1.7   | 59     | 0.00  | 10.50   |
| 17   | Anthracene                        | 1.487 | 1.528 | -2.8   | 59     | 0.00  | 10.59   |
| 18   | Carbazole                         | 1.154 | 1.169 | -1.3   | 57     | 0.00  | 10.94   |
| 19 C | Fluoranthene                      | 1.451 | 1.514 | -4.3   | 60     | 0.01  | 12.67   |
| 20 I | Chrysene-d12                      | 1.000 | 1.000 | 0.0    | 62     | 0.00  | 15.37   |
| 21   | Pyrene                            | 2.186 | 2.230 | -2.0   |        | -0.02 | 13.07   |
| 22 S | Terphenyl-d14                     | 1.111 | 1.119 | -0.7   |        | -0.01 | 13.49   |
| 23   | Benzo[a]anthracene                | 1.651 | 1.551 | 6.1    | 59     | 0.00  | 15.36   |
| 24   | Chrysene                          | 1.606 | 1.619 | -0.8   | 62     | 0.00  | 15.42   |
| 25 I | Perylene-d12                      | 1.000 | 1.000 | 0.0    | 66     | 0.00  | 17.87   |
| 26   | Benzo[b]fluoranthene              | 1.587 | 1.447 | 8.8    | 61     | 0.00  | 17.26   |
| 27   | Benzo[k]fluoranthene              | 1.662 | 1.654 | 0.5    | 64     | 0.00  | 17.31   |
| 28 C | Benzo[a]pyrene                    | 1.376 | 1.302 | 5.4    | 62     | 0.00  | 17.77   |
| 29   | <pre>Indeno[1,2,3-cd]pyrene</pre> | 1.048 | 0.968 | 7.6    | 60     | 0.00  | 19.45   |
| 30   | Dibenz[a,h]anthracene             | 1.015 | 0.998 | 1.7    | 63     | 0.00  | 19.51   |
| 31   | Benzo[g,h,i]perylene              | 1.204 | 1.248 | -3.7   | 67<br> | 0.01  | 19.81   |

(#) = Out of Range (#) = Out of Range SPCC's out = 0 CCC's R13586.D SIM\_PAHC.M Thu May 15 14:06:39 2008

SPCC's out = 0 CCC's out = 0



Instrument Performance Check (DFTPP)

Job Number: F57467

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample: Lab File ID: SR637-DFTPP R13741.D

Injection Date: 05/16/08

Instrument ID: GCMSR

Injection Time: 13:56

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail             |
|-----|------------------------------------|------------------|-------------------------|-----------------------|
| 51  | 30.0 - 60.0% of mass 198           | 94988            | 39.0                    | Pass                  |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0 (0.0                | 0) a Pass             |
| 69  | Mass 69 relative abundance         | 101059           | 41.5                    | Pass                  |
| 70  | Less than 2.0% of mass 69          | 423              | 0.17 (0.4               | 42) a Pass            |
| 127 | 40.0 - 60.0% of mass 198           | 109608           | 45.0                    | Pass                  |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                     | Pass                  |
| 198 | Base peak, 100% relative abundance | 243381           | 100.0                   | Pass                  |
| 199 | 5.0 - 9.0% of mass 198             | 16228            | 6.7                     | Pass                  |
| 275 | 10.0 - 30.0% of mass 198           | 69381            | 28.5                    | Pass                  |
| 365 | 1.0 - 100.0% of mass 198           | 8454             | 3.5                     | Pass                  |
| 441 | Present, but less than mass 443    | 33637            | 13.8 (80                | .4) b Pass            |
| 442 | 40.0 - 100.0% of mass 198          | 216594           | 89.0                    | Pass                  |
| 443 | 17.0 - 23.0% of mass 442           | 41848            | 17.2 (19                | .3) <sup>c</sup> Pass |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID |
|------------------|----------------|------------------|------------------|-----------------|---------------------|
| SR637-CC633      | R13742.D       | 05/16/08         | 14:12            | 00:16           | Continuing cal 5    |
| OP25062-MB       | R13743.D       | 05/16/08         | 14:43            | 00:47           | Method Blank        |
| ZZZZZZ           | R13744.D       | 05/16/08         | 15:10            | 01:14           | (unrelated sample)  |
| ZZZZZZ           | R13745.D       | 05/16/08         | 15:37            | 01:41           | (unrelated sample)  |
| ZZZZZZ           | R13746.D       | 05/16/08         | 16:09            | 02:13           | (unrelated sample)  |
| ZZZZZZ           | R13747.D       | 05/16/08         | 16:36            | 02:40           | (unrelated sample)  |
| ZZZZZZ           | R13748.D       | 05/16/08         | 17:03            | 03:07           | (unrelated sample)  |
| F57467-5         | R13749.D       | 05/16/08         | 17:30            | 03:34           | KWSMMW-07-0508      |
| OP25084-MB       | R13750.D       | 05/16/08         | 17:57            | 04:01           | Method Blank        |
| ZZZZZZ           | R13751.D       | 05/16/08         | 18:24            | 04:28           | (unrelated sample)  |
| ZZZZZZ           | R13752.D       | 05/16/08         | 18:50            | 04:54           | (unrelated sample)  |



Job Number: F57467 Account:

Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL Sample:

SR637-CC633

Lab FileID: R13742.D

#### Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\051608\R13742.D Acq On : 16 May 2008 2:12 pm .

Vial: 2

Operator: rayb

Sample : cc633-5

Misc : op25062, sr637, 1000, , , 1, 1, water Multiplr: 1.00

Inst : MSBNA3

MS Integration Params: RTEINT.P

Method : C:\msdchem\1\METHODS\SIM\_PAHC.M (RTE Integrator)
Title : PAH's by 8270 SIM
Last Update : Mon May 19 12:37:55 2008 Response via: Multiple Level Calibration

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

|      | Compound                          | AvgRF | CCRF  | %Dev A | Area%   | Dev(m | in)R.T. |
|------|-----------------------------------|-------|-------|--------|---------|-------|---------|
| 1 I  | Naphthalene-d8                    | 1.000 | 1.000 | 0.0    | <b></b> | 0.00  | 5.76    |
| 2 S  | Nitrobenzene-d5                   | 0.391 | 0.400 | -2.3   | 73      | 0.00  | 5.12    |
| 3 P  | N-nitroso-di-n-propylamin         | 0.139 | 0.141 | -1.4   | 73      | 0.00  | 5.00    |
| 4    | Naphthalene                       | 1.194 | 1.274 | -6.7   | 76      | 0.00  | 5.78    |
| 5    | 2-Methylnaphthalene               | 0.791 | 0.840 | -6.2   | 75      | 0.00  | 6.54    |
| 6    | 1-Methylnaphthalene               | 0.723 | 0.771 | -6.6   | 76      | 0.00  | 6.66    |
| 7 I  | Acenaphthene-d10                  | 1.000 | 1.000 | 0.0    | 75      | 0.00  | 7.96    |
| 8 P  | Hexachlorocyclopentadiene         | 0.336 | 0.347 | -3.3   | 70      | 0.00  | 6.73    |
| 9 S  | 2-Fluorobiphenyl                  | 1.885 | 1.769 | 6.2    | 69      | 0.00  | 7.01    |
| 10   | Acenaphthylene                    | 2.456 | 2.539 | -3.4   | 76      | 0.00  | 7.74    |
| 11 C | Acenaphthene                      | 1.514 | 1.557 | -2.8   | 76      | 0.00  | 8.01    |
| 12 P | 2,4-Dinitrophenol                 | 0.230 | 0.181 | 21.3#  | 53      | 0.00  | 8.12    |
| 13 P | 4-Nitrophenol                     | 0.318 | 0.278 | 12.6   | 63      | 0.01  | 8.29    |
| 14   | Fluorene                          | 1.590 | 1.638 | -3.0   | 76      | 0.00  | 8.83    |
| 15 I | Phenanthrene-d10                  | 1.000 | 1.000 | 0.0    | 75      | 0.00  | 10.43   |
| 16   | Phenanthrene                      | 1.466 | 1.514 | -3.3   | 76      | 0.00  | 10.48   |
| 17   | Anthracene                        | 1.487 | 1.529 | -2.8   | 75      | 0.00  | 10.57   |
| 18   | Carbazole                         | 1.154 | 1.037 | 10.1   | 68      | 0.01  | 10.91   |
| 19 C | Fluoranthene                      | 1.451 | 1.521 | -4.8   | 76      | 0.02  | 12.65   |
| 20 I | Chrysene-d12                      | 1.000 | 1.000 | 0.0    | 71      | 0.00  | 15.34   |
| 21   | Pyrene                            | 2.186 | 2.364 | -8.1   |         | -0.01 | 13.05   |
| 22 S | Terphenyl-d14                     | 1.111 | 1.216 | -9.5   | 75      | 0.00  | 13.47   |
| 23   | Benzo[a]anthracene                | 1.651 | 1.648 | 0.2    | 70      | 0.00  | 15.33   |
| 24   | Chrysene                          | 1.606 | 1.667 | -3.8   | 71      | 0.00  | 15.39   |
| 25 I | Perylene-d12                      | 1.000 | 1.000 | 0.0    | 69      | 0.00  | 17.84   |
| 26   | Benzo[b]fluoranthene              | 1.587 | 1.644 | -3.6   | 67      | 0.00  | 17.23   |
| 27   | Benzo[k]fluoranthene              | 1.662 | 1.746 | -5.1   | 70      | 0.00  | 17.28   |
| 28 C | Benzo[a]pyrene                    | 1.376 | 1.378 | -0.1   | 66      | -0.03 | 17.75   |
| 29   | <pre>Indeno[1,2,3-cd]pyrene</pre> | 1.048 | 0.887 | 15.4   | 55      | -0.02 | 19.43   |
| 30   | Dibenz[a,h]anthracene             | 1.015 | 0.841 | 17.1   | 54      | -0.02 | 19.48   |
| 31   | Benzo[g,h,i]perylene              | 1.204 | 1.174 | 2.5    | 64      | -0.02 | 19.77   |

(#) = Out of Range (#) = Out of Range SPCC's out = 0 CCC'sR13587.D SIM\_PAHC.M Mon May 19 12:38:48 2008

SPCC's out = 0 CCC's out = 0



Instrument Performance Check (DFTPP)

F57467 Job Number:

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample: Lab File ID: SW2079-DFTPP W040585.D

Injection Date: 05/19/08 Injection Time: 15:42

Instrument ID: GCMSW

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail            |
|-----|------------------------------------|------------------|-------------------------|----------------------|
| 51  | 30.0 - 60.0% of mass 198           | 92220            | 34.8                    | Pass                 |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0 (0.0)               | a Pass               |
| 69  | Mass 69 relative abundance         | 97517            | 36.8                    | Pass                 |
| 70  | Less than 2.0% of mass 69          | 586              | 0.22 (0.6)              | a Pass               |
| 127 | 40.0 - 60.0% of mass 198           | 127264           | 48.1                    | Pass                 |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                     | Pass                 |
| 198 | Base peak, 100% relative abundance | 264832           | 100.0                   | Pass                 |
| 199 | 5.0 - 9.0% of mass 198             | 18662            | 7.0                     | Pass                 |
| 275 | 10.0 - 30.0% of mass 198           | 65664            | 24.8                    | Pass                 |
| 365 | 1.0 - 100.0% of mass 198           | 6305             | 2.4                     | Pass                 |
| 441 | Present, but less than mass 443    | 26572            | 10.0 (77.4              | 4) <sup>b</sup> Pass |
| 442 | 40.0 - 100.0% of mass 198          | 176952           | 66.8                    | Pass                 |
| 443 | 17.0 - 23.0% of mass 442           | 34312            | 13.0 (19.4              | 4) <sup>c</sup> Pass |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID        |
|------------------|----------------|------------------|------------------|-----------------|----------------------------|
| SW2079-IC2079    | W040587.D      | 05/19/08         | 16:35            | 00:53           | Initial cal 1              |
| SW2079-IC2079    | W040588.D      | 05/19/08         | 17:02            | 01:20           | Initial cal 2              |
| SW2079-IC2079    | W040589.D      | 05/19/08         | 17:28            | 01:46           | Initial cal 3              |
| SW2079-ICC2079   | W040590.D      | 05/19/08         | 17:54            | 02:12           | Initial cal 4              |
| SW2079-IC2079    | W040591.D      | 05/19/08         | 18:20            | 02:38           | Initial cal 5              |
| SW2079-IC2079    | W040592.D      | 05/19/08         | 18:47            | 03:05           | Initial cal 6              |
| SW2079-IC2079    | W040593.D      | 05/19/08         | 19:13            | 03:31           | Initial cal 7              |
| SW2079-ICV2079   | W040594.D      | 05/19/08         | 19:39            | 03:57           | Initial cal verification 4 |



**Initial Calibration Summary** Job Number: F57467 Account:

**TETRPAPT Tetra Tech NUS** 

Sample:

SW2079-ICC2079

W040590.D

Project:

NAS Key West, Key West, FL

Lab FileID:

Response Factor Report MSBNA01

: C:\HPCHEM\1\METHODS\SIM PAHC.M (RTE Integrator)

Last Update : Tue May 20 10:59:33 2008

Response via: Initial Calibration

Calibration Files

L1 =W040587.D L2 =W040588.D L3 =W040589.D L4 =W040590.D L5 =W040591.D L6 =W040592.D L7 =W040593.D icv =W040594.D

| C   | ompound                      | L1      | L2    | L3           | L4    | L5    | L6       | L7                | icv | Avg    | %RSD  |
|-----|------------------------------|---------|-------|--------------|-------|-------|----------|-------------------|-----|--------|-------|
|     |                              |         |       | <del>-</del> |       |       |          |                   |     |        |       |
| 1)  | I Naphthale                  | ene-d8  |       |              |       |       | T S T D  |                   |     |        | _     |
| 2)  | Nitrobenzene                 | 0.345   | 0.354 | 0.358        | 0.358 | 0.348 | 0.332    | 0.315             |     | 0.344  | 4.52  |
|     | N-nitroso-di                 |         |       |              |       |       |          |                   |     | 0.101  |       |
| 4)  | Naphthalene                  | 1,092   | 1.075 | 1.023        | 1.013 | 0.973 | 0.816    | 0.795             |     | 0.970  |       |
| 5)  | 2-Methylnaph                 | 0.736   | 0.733 | 0.710        | 0.701 | 0.671 | 0.612    | 0.562             | 1   |        |       |
|     | 1-Methylnaph                 |         |       |              |       |       |          |                   |     |        |       |
|     |                              |         |       |              |       |       |          |                   |     |        |       |
|     | I Acenaphtl                  |         |       |              |       |       |          |                   |     |        |       |
|     | Hexachlorocy                 |         |       |              |       |       |          |                   |     |        | 11.78 |
|     | 2-Fluorobiph                 |         |       |              |       |       |          |                   |     | 1.686  | 7.69  |
|     | Acenaphthyle                 |         |       |              |       |       |          |                   |     | 1.825  | 8.25  |
|     | Acenaphthene                 |         |       |              |       |       |          |                   |     | 1.157  | 8.94  |
| 12) | 2,4-Dinitrop<br>4-Nitropheno |         | 0.044 | 0.076        | 0.112 | 0.149 | 0.155    | 0.171             | (   | 0.118  | 42.16 |
| 13) | 4-Nitropheno                 |         | 0.185 | 0.209        | 0.224 | 0.239 | 0.212    | 0.236             | 1   | 0.218  | 9.24  |
| 14) | Fluorene                     | 1.324   | 1.294 | 1.292        | 1.271 | 1.219 | 1.143    | 1.058             |     | 1.229  | 7.83  |
| 151 | I Phenanth                   | rene-di | 1.0   |              |       |       | T \$ T D |                   |     |        | _     |
| 16) | Phonanthrone                 | 1 250   | 1 210 | 1 171        | 1 163 | 1 136 | 1 002    | 0 966             |     | 1 130  | 0 15  |
| 17) | Phenanthrene<br>Anthracene   | 1 244   | 1 230 | 1 188        | 1 175 | 1 171 | 1 030    | 0.300             |     | 1 1/1/ | 9 10  |
| 18) | Carbazole                    | 1.053   | 1.058 | 1 010        | 0 949 | 0.873 | 0.755    | 0.507             |     | 912    | 16.22 |
|     |                              |         |       |              |       |       |          | o.002<br>pefficie |     |        |       |
|     |                              |         |       |              |       |       |          | + -0.02           |     |        |       |
|     |                              | •       |       |              |       |       |          |                   |     |        |       |
| 19) | Fluoranthene                 | 1.224   | 1.243 | 1.192        | 1.185 | 1.163 | 1.040    | 0.980             |     | 1.147  | 8.59  |
| 001 | T 01                         | 11.0    |       | -            |       | _     |          |                   |     |        |       |
| 20) |                              |         |       | 1 000        | 1 060 | 1 777 | ISTD     | 1 404             |     |        |       |
|     | Pyrene                       |         |       |              |       |       |          |                   |     |        | 9.01  |
|     | Terphenyl-dl                 |         |       |              |       |       |          |                   |     | 1.030  | 6.08  |
| 23) | Benzo[a]anth                 | 1.5/2   | 1.542 | 1.54/        | 1.607 | 1.638 | 1.542    | 1.493             |     | 1.563  | 3.05  |
| 24) | Chrysene                     | 1.524   | 1.534 | 1.546        | 1.615 | 1.616 | 1.505    | 1.468             | •   | 1.544  | 3.55  |
| 25) | I Perylene-                  | -d12    |       |              |       |       | ISTD     |                   |     |        |       |
|     | Benzo[b]fluo                 |         |       |              |       |       |          |                   |     | 1.428  | 5.50  |
|     | Benzo[k]fluo                 |         |       |              |       |       |          |                   |     | 1.521  | 3.46  |
|     | Benzo[a]pyre                 |         |       |              |       |       |          |                   |     | 1.290  | 4.96  |
|     | Indeno[1,2,3                 |         |       |              |       |       |          |                   |     | 0.999  |       |
|     | Dibenz[a,h]a                 |         |       |              |       |       |          |                   |     |        |       |
|     | Benzo[g,h,i]                 |         |       |              |       |       |          |                   |     | 1.173  | 3.75  |
|     |                              |         |       |              |       |       |          |                   |     |        |       |

SIM PAHC.M

Tue May 20 11:02:03 2008

(#) = Out of Range ### Number of calibration levels exceeded format ###



Instrument Performance Check (DFTPP)
Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample: Lab File ID: SW2081-DFTPP

Injection Date: 05/20/08

W040620.D

Injection Time: 12:24

| Instrument | ID: | GCMSW |
|------------|-----|-------|
|            |     |       |

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative Abundance     | Pass/Fail |
|-----|------------------------------------|------------------|--------------------------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 58333            | 32.3                     | Pass      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0 (0.0) a              | Pass      |
| 69  | Mass 69 relative abundance         | 62693            | 34.7                     | Pass      |
| 70  | Less than 2.0% of mass 69          | 344              | 0.19 (0.55) a            | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 83085            | 46.0                     | Pass      |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                      | Pass      |
| 198 | Base peak, 100% relative abundance | 180624           | 100.0                    | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 12295            | 6.8                      | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 43477            | 24.1                     | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 3960             | 2.2                      | Pass      |
| 441 | Present, but less than mass 443    | 16990            | 9.4 (77.0) b             | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | . 115827         | 64.1                     | Pass      |
| 443 | 17.0 - 23.0% of mass 442           | 22063            | 12.2 (19.0) <sup>c</sup> | Pass      |

<sup>(</sup>a) Value is % of mass 69

#### This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab       | Date     | Time     | Hours  | Client                                     |
|---------------|-----------|----------|----------|--------|--------------------------------------------|
| Sample ID     | File ID   | Analyzed | Analyzed | Lapsed | Sample ID                                  |
| SW2081-CC2079 | W040621.D | 05/20/08 | 12:40    | 00:16  | Continuing cal 4                           |
| OP25106-MB    | W040624.D | 05/20/08 | 13:38    | 01:14  | Method Blank                               |
| OP25106-BS    | W040625.D | 05/20/08 | 14:04    | 01:40  | Blank Spike                                |
| ZZZZZZ        | W040626.D | 05/20/08 | 14:36    | 02:12  | (unrelated sample)                         |
| ZZZZZZ        | W040627.D | 05/20/08 | 15:02    | 02:38  | (unrelated sample)                         |
| F57485-3      | W040628.D | 05/20/08 | 15:28    | 03:04  | (used for QC only; not part of job F57467) |
| OP25106-MS    | W040629.D | 05/20/08 | 15:54    | 03:30  | Matrix Spike                               |
| OP25106-MSD   | W040630.D | 05/20/08 | 16:21    | 03:57  | Matrix Spike Duplicate                     |
| OP25102-MB    | W040631.D | 05/20/08 | 16:47    | 04:23  | Method Blank                               |
| F57608-2      | W040632.D | 05/20/08 | 17:13    | 04:49  | (used for QC only; not part of job F57467) |
| OP25102-MS    | W040633.D | 05/20/08 | 17:40    | 05:16  | Matrix Spike                               |
| OP25102-MSD   | W040634.D | 05/20/08 | 18:06    | 05:42  | Matrix Spike Duplicate                     |
| ZZZZZZ        | W040635.D | 05/20/08 | 18:32    | 06:08  | (unrelated sample)                         |
| ZZZZZZ        | W040636.D | 05/20/08 | 18:59    | 06:35  | (unrelated sample)                         |
| ZZZZZZ        | W040637.D | 05/20/08 | 19:25    | 07:01  | (unrelated sample)                         |
| F57467-6      | W040638.D | 05/20/08 | 19:51    | 07:27  | KWSMMW-08-0508                             |
| F57467-7      | W040639.D | 05/20/08 | 20:17    | 07:53  | KWSMMW-09D-0508                            |
| ZZZZZZ        | W040640.D | 05/20/08 | 20:43    | 08:19  | (unrelated sample)                         |
| ZZZZZZ        | W040641.D | 05/20/08 | 21:09    | 08:45  | (unrelated sample)                         |
|               |           |          |          |        |                                            |



<sup>(</sup>b) Value is % of mass 443

<sup>(</sup>c) Value is % of mass 442

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample: Lab File ID: SW2081-DFTPP

Injection Date: 05/20/08

W040620.D

Injection Time: 12:24

Instrument ID: GCMSW

| Lab       | Lab       | Date     | Time     | Hours  | Client             |
|-----------|-----------|----------|----------|--------|--------------------|
| Sample ID | File ID   | Analyzed | Analyzed | Lapsed | Sample ID          |
| ZZZZZZ    | W040642.D | 05/20/08 | 21:35    | 09:11  | (unrelated sample) |
| ZZZZZZ    | W040643.D | 05/20/08 | 22:01    | 09:37  | (unrelated sample) |
| ZZZZZZ    | W040644.D | 05/20/08 | 22:27    | 10:03  | (unrelated sample) |
| ZZZZZZ    | W040645.D | 05/20/08 | 22:54    | 10:30  | (unrelated sample) |
| ZZZZZZ    | W040646.D | 05/20/08 | 23:19    | 10:55  | (unrelated sample) |
| ZZZZZZ    | W040647.D | 05/20/08 | 23:45    | 11:21  | (unrelated sample) |
| ZZZZZZ    | W040648.D | 05/21/08 | 00:12    | 11:48  | (unrelated sample) |

### Continuing Calibration Summary Job Number: F57467

TETRPAPT Tetra Tech NUS

Sample: Lab FileID: SW2081-CC2079 W040621.D

Account: Project:

NAS Key West, Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\052008\W040621.D

Vial: 2

Sample : cc2079-4

Acq On : 20 May 2008 12:40 pm

Operator: rayb

Inst : MSBNA01

: op25106,sw2081,1000,,,1,1,water

Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\SIM\_PAHC.M (RTE Integrator)
Title : PAH's by 8270 SIM
Last Update : Wed May 21 08:37:11 2008

Response via : Multiple Level Calibration

Min. RRF Max. RRF Dev : 20%

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. Rel. Area : 200%

|    |   | Compound                          | AvgRF    | CCRF   | %Dev A | Area% | Dev(m     | in)R.T. |
|----|---|-----------------------------------|----------|--------|--------|-------|-----------|---------|
|    | Ι | Naphthalene-d8                    | 1.000    | 1.000  | . 0.0  | 76    | 0.00      | 5.37    |
| 2  | S | Nitrobenzene-d5                   | 0.344    | 0.355  | -3.2   | 78    | 0.00      | 4.77    |
| 3  | P | N-nitroso-di-n-propylamin         | 0.101    | 0.095  | 5.9    | 72    | 0.00      | 4.66    |
| 4  |   | Naphthalene                       | 0.970    | 0.970  | 0.0    | 76    | 0.00      | 5.38    |
| 5  |   | 2-Methylnaphthalene               | 0.675    | 0.672  | 0.4    | 76    | 0.00      | 6.09    |
| 6  |   | 1-Methylnaphthalene               | 0.633    | 0.633  | 0.0    | 76    | 0.00      | 6.21    |
|    | I | Acenaphthene-d10                  | 1.000    | 1.000  | 0.0    | 76    | 0.00      | 7.44    |
| 8  | P | Hexachlorocyclopentadiene         | 0.259    | 0.280  | -8.1   | 75    | 0.00      | 6.27    |
| 9  | S | 2-Fluorobiphenyl                  | 1.686    | 1.886  | -11.9  | 77    | 0.00      | 6.55    |
| 10 |   | Acenaphthylene                    | 1.825    | 1.912  | -4.8   | 78    | 0.00      | 7.23    |
| 11 |   | Acenaphthene                      | 1.157    | 1.173  | -1.4   | 76    | 0.00      | 7.48    |
| 12 |   | 2,4-Dinitrophenol                 | 0.118    | 0.150  | -27.1# | 76    | 0.01      | 7.61    |
| 13 | P | 4-Nitrophenol                     | 0.218    | 0.239  | -9.6   | 76    | 0.02      | 7.78    |
| 14 |   | Fluorene                          | 1.229    | 1.280  | -4.1   | 8.0   | 0.00      | 8.29    |
| 15 | I | Phenanthrene-d10                  | 1.000    | 1.000  | 0.0    | 78    | 0.00      | 9.83    |
| 16 |   | Phenanthrene                      | 1.130    | 1.153  | -2.0   | 79    | 0.00      | 9.87    |
| 17 |   | Anthracene                        | 1.144    | 1.188  | -3.8   | 79    | 0.00      | 9.96    |
|    |   |                                   | - Amount |        | %Drift |       |           |         |
| 18 |   | Carbazole                         | 20.000   | 21.834 | -9.2   | 85    | 0.00      | 10.31   |
|    |   |                                   | - AvgRF  | CCRF   | %Dev   |       |           |         |
| 19 | С | Fluoranthene                      | 1.147    | 1.190  | -3.7   | 80    | 0.00      | 12.02   |
| 20 | I | Chrysene-d12                      | 1.000    | 1.000  | 0.0    | 78    | 0.00      | 14.68   |
| 21 |   | Pyrene                            | 1.760    | 1.812  | -3.0   | 80    | 0.00      | 12.40   |
| 22 | S | Terphenyl-d14                     | 1.030    | 1.076  | -4.5   | 79    | 0.00      | 12.85   |
| 23 |   | Benzo[a]anthracene                | 1.563    | 1.632  | -4.4   | 78    | 0.00      | 14.66   |
| 24 |   | Chrysene                          | 1.544    | 1.650  | -6.9   | 80    | 0.00      | 14.72   |
| 25 | I | Perylene-d12                      | 1.000    | 1.000  | 0.0    | 76    | 0.00      | 17.16   |
| 26 |   | Benzo[b]fluoranthene              | 1.428    | 1.524  | -6.7   | 75    | 0.00      | 16.55   |
| 27 | _ | Benzo[k]fluoranthene              | 1.521    | 1.654  | -8.7   | 79    | 0.00      | 16.59   |
| 28 | С | Benzo[a]pyrene                    | 1.290    | 1.389  | -7.7   | 76    | 0.00      | 17.06   |
| 29 |   | <pre>Indeno[1,2,3-cd]pyrene</pre> | 0.999    | 0.950  | 4.9    | 68    | 0.00      | 18.71   |
| 30 |   | Dibenz[a,h]anthracene             | 1.010    | 1.005  | 0.5    | 70    | 0.00      | 18.78   |
| 31 |   | Benzo[g,h,i]perylene              | 1.173    | 1.150  | 2.0    | 71    | 0.00      | 19.05   |
|    |   |                                   |          |        |        |       | - <b></b> |         |

Continuing Calibration Summary
Job Number: F57467
Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

Sample:

Page 2 of 2 SW2081-CC2079

Lab FileID:

W040621.D

(#) = Out of Range W040591.D SIM PAHC.M

SPCC's out = 0 CCC's out = 0Wed May 21 08:37:55 2008

Instrument Performance Check (DFTPP)
Job Number: F57467

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

Sample: Lab File ID: SW2082-DFTPP

Injection Date: 05/21/08

W040652.D

Injection Time: 13:57

Instrument ID: GCMSW

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail            |
|-----|------------------------------------|------------------|-------------------------|----------------------|
| 51  | 30.0 - 60.0% of mass 198           | 86339            | 31.6                    | Pass                 |
| 68  | Less than 2.0% of mass 69          | . 0              | 0.0 (0.0)               | ) <sup>a</sup> Pass  |
| 69  | Mass 69 relative abundance         | 95347            | 34.9                    | Pass                 |
| 70  | Less than 2.0% of mass 69          | 518              | 0.19 (0.5               | 4) a Pass            |
| 127 | 40.0 - 60.0% of mass 198           | 124325           | 45.5                    | Pass                 |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                     | Pass                 |
| 198 | Base peak, 100% relative abundance | 273347           | 100.0                   | Pass                 |
| 199 | 5.0 - 9.0% of mass 198             | 18247            | 6.7                     | Pass                 |
| 275 | 10.0 - 30.0% of mass 198           | 68549            | 25.1                    | Pass                 |
| 365 | 1.0 - 100.0% of mass 198           | 6112             | 2.2                     | Pass                 |
| 441 | Present, but less than mass 443    | 29243            | 10.7 (76.               | 8) b Pass            |
| 442 | 40.0 - 100.0% of mass 198          | 195683           | 71.6                    | Pass                 |
| 443 | 17.0 - 23.0% of mass 442           | 38065            | 13.9 (19.               | 5) <sup>c</sup> Pass |

<sup>(</sup>a) Value is % of mass 69

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID |
|------------------|----------------|------------------|------------------|-----------------|---------------------|
| Sumpre 12        | 1110,12        | 111141, 200      | 1 mary zea       | Lupsed          | Sumple 1B           |
| SW2082-CC2079    | W040653.D      | 05/21/08         | 14:20            | 00:23           | Continuing cal 5    |
| OP25131-BS       | W040654.D      | 05/21/08         | 14:56            | 00:59           | Blank Spike         |
| OP25131-MB       | W040655.D      | 05/21/08         | 15:23            | 01:26           | Method Blank        |
| ZZZZZZ           | W040658.D      | 05/21/08         | 16:47            | 02:50           | (unrelated sample)  |
| ZZZZZZ           | W040665.D      | 05/21/08         | 20:22            | 06:25           | (unrelated sample)  |
| ZZZZZZ           | W040666.D      | 05/21/08         | 20:48            | 06:51           | (unrelated sample)  |
| ZZZZZZ           | W040668.D      | 05/21/08         | 21:40            | 07:43           | (unrelated sample)  |
| ZZZZZZ           | W040669.D      | 05/21/08         | 22:06            | 08:09           | (unrelated sample)  |
| ZZZZZZ           | W040670.D      | 05/21/08         | 22:33            | 08:36           | (unrelated sample)  |
| ZZZZZZ           | W040671.D      | 05/21/08         | 22:59            | 09:02           | (unrelated sample)  |
| OP25106-MB       | W040672.D      | 05/21/08         | 23:25            | 09:28           | Method Blank        |
| ZZZZZZ           | W040673.D      | 05/21/08         | 23:51            | 09:54           | (unrelated sample)  |
| ZZZZZZ           | W040675.D      | 05/22/08         | 00:43            | 10:46           | (unrelated sample)  |
| ZZZZZZ           | W040676.D      | 05/22/08         | 01:09            | 11:12           | (unrelated sample)  |
| ZZZZZZ           | W040677.D      | 05/22/08         | 01:35            | 11:38           | (unrelated sample)  |



<sup>(</sup>b) Value is % of mass 443

<sup>(</sup>c) Value is % of mass 442

# Continuing Calibration Summary Job Number: F57467

**TETRPAPT Tetra Tech NUS** 

Account: Project:

NAS Key West, Key West, FL

Sample: Lab FileID:

SW2082-CC2079 W040653.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\052108\W040653.D

Vial: 2 Operator: rayb

Sample : cc2079-5

Acq On : 21 May 2008 2:20 pm

Inst : MSBNA01

Misc : op25131, sw2082, 30.0, , , 1, 1, soil

Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\HPCHEM\1\METHODS\SIM PAHC.M (RTE Integrator)

Method : C:\HPCHEM\1\METHODS\SIM\_I
Title : PAH's by 8270 SIM
Last Update : Thu May 22 12:56:55 2008 Response via : Multiple Level Calibration

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

|      | Compound                          | AvgRF    | CCRF    | %Dev Ar | ea% | Dev(m     | in)R.T. |
|------|-----------------------------------|----------|---------|---------|-----|-----------|---------|
| 1 I  | Naphthalene-d8                    | 1.000    | 1.000   | 0.0     | 91  | 0.00      | 5.33    |
| 2 S  | Nitrobenzene-d5                   | 0.344    | 0.359   | -4.4    | 94  | 0.00      | 4.74    |
| 3 P  | N-nitroso-di-n-propylamin         | 0.101    | 0.104   | -3.0    | 94  | 0.00      | 4.64    |
| 4    | Naphthalene                       | 0.970    | 0.933   | 3.8     | 88  | 0.00      | 5.35    |
| 5    | 2-Methylnaphthalene               | 0.675    | 0.670   | 0.7     | 91  | 0.00      | 6.06    |
| 6    | 1-Methylnaphthalene               | 0.633    | 0.620   | 2.1     | 89  | 0.00      | 6.16    |
| 7 I  | Acenaphthene-d10                  | 1.000    | 1.000   | 0.0     | 90  | 0.00      | 7.39    |
| 8 P  | Hexachlorocyclopentadiene         | 0.259    | 0.284   |         | 90  | 0.00      | 6.23    |
| 9 S  | 2-Fluorobiphenyl                  | 1.686    | 1.560   |         | 76  | 0.00      | 6.50    |
| . 10 | Acenaphthylene                    | 1.825    | 1.772   |         | 86  | 0.00      | 7.18    |
| 11 C | Acenaphthene                      | 1.157    | 1.170   |         | 90  | 0.00      | 7.43    |
| 12 P | 2,4-Dinitrophenol                 | 0.118    | 0.146   |         | 89  | 0.01      | 7.56    |
| 13 P | 4-Nitrophenol                     | 0.218    | 0.246   |         | 93  | 0.02      | 7.73    |
| 14   | Fluorene                          | 1.229    | 1.226   | 0.2     | 91  | 0.01      | 8.24    |
| 15 I | Phenanthrene-d10                  | 1.000    | 1.000   |         | 92  | 0.00      | 9.77    |
| 16   | Phenanthrene                      | 1.130    | 1.132   | -0.2    | 92  | 0.00      | 9.82    |
| 17   | Anthracene                        | 1.144    | 1.151   | -0.6    | 91  | 0.01      | 9.92    |
|      |                                   | - Amount |         | %Drift  |     | <b></b>   |         |
| 18   | Carbazole                         | 20.000   | 20.579  | -2.9    | 95  | 0.02      | 10.26   |
|      |                                   | 110 9111 | CCRF    | %Dev    |     | <b></b> - |         |
| 19 C | Fluoranthene                      | 1.147    | 1.175   | -2.4    | 93  | 0.02      | 11.96   |
| 20 I | Chrysene-d12                      | 1.000    | 1.000   | 0.0     | 98  | 0.00      | 14.63   |
| 21   | Pyrene                            | 1.760    | 1.690   |         | 93  | 0.00      | 12.35   |
| 22 S | Terphenyl-d14                     | 1.030    | 1.038   |         | 95  | 0.00      | 12.80   |
| 23   | Benzo[a]anthracene                | 1.563    | 1.577   |         | 94  | 0.00      | 14.61   |
| 24   | Chrysene                          | 1.544    | 1.615   | -4.6    | 98  | 0.00      | 14.67   |
| 25 I | Perylene-d12                      | 1.000    | 1.000   | 0.0     | 95  | 0.00      | 17.09   |
| 26   | Benzo[b]fluoranthene              | 1.428    | 1.546   | -8.3    | 95  | 0.00      | 16.49   |
| 27   | Benzo[k]fluoranthene              | 1.521    | 1.596   |         | 95  | 0.00      | 16.54   |
| 28 C | Benzo[a]pyrene                    | 1.290    | 1.376   |         | 95  | -0.06     | 17.00   |
| 29   | <pre>Indeno[1,2,3-cd]pyrene</pre> | 0.999    | 1.041   |         | 93  | -0.06     | 18.66   |
| 30   | Dibenz[a,h]anthracene             | 1.010    | 1.085   | -7.4    | 95  | -0.06     | 18.72   |
| 31   | Benzo[g,h,i]perylene              | 1.173    | 1.209   | -3.1    | 93  | -0.06     | 18.99   |
|      |                                   |          | <b></b> |         |     |           |         |



Continuing Calibration Summary
Job Number: F57467
Account: TETRPAPT Tetra Tech NUS
Project: NAS Key West, Key West, FL

Page 2 of 2

Sample:

SW2082-CC2079

Lab FileID:

W040653.D

(#) = Out of Range W040591.D SIM PAHC.M SPCC's out = 0 CCC's out = 0

Thu May 22 12:58:01 2008

## Semivolatile Internal Standard Area Summary

Job Number:

F57467

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

SR636-CC633

Injection Date:

05/15/08

Check Std: Lab File ID:

R13712.D

Injection Time: 12:17

Instrument ID: GCMSR

Method:

SW846 8270C BY SIM

|                          | IS 1<br>AREA | RT   | IS 2<br>AREA | RT   | IS 3<br>AREA | RT    | IS 4<br>AREA | RT    | IS 5<br>AREA | RT    |
|--------------------------|--------------|------|--------------|------|--------------|-------|--------------|-------|--------------|-------|
|                          | 7330271      |      |              |      | AKLA         |       |              |       | ———          | K1    |
| Check Std                | 192594       | 5.78 | 97755        | 7.98 | 147026       | 10.46 | 103418       | 15.37 | 92764        | 17.87 |
| Upper Limit <sup>a</sup> | 385188       | 6.28 | 195510       | 8.48 | 294052       | 10.96 | 206836       | 15.87 | 185528       | 18.37 |
| Lower Limit b            | 96297        | 5.28 | 48878        | 7.48 | 73513        | 9.96  | 51709        | 14.87 | 46382        | 17.37 |
| Lab                      | IS 1         |      | IS 2         |      | IS 3         |       | IS 4         |       | IS 5         |       |
| Sample ID                | AREA         | RT   | AREA         | RT   | AREA         | RT    | AREA         | RT    | AREA         | RT    |
| OP25062-BS               | 190354       | 5.78 | 97343        | 7.98 | 145941       | 10.46 | 103491       | 15.38 | 91020        | 17.88 |
| OP25062-MB               | 181060       | 5.78 | 87429        | 7.98 | 131909       | 10.46 | 91834        | 15.37 | 80945        | 17.87 |
| ZZZZZZ                   | 196684       | 5.78 | 101618       | 7.99 | 147643       | 10.47 | 104561       | 15.38 | 96436        | 17.88 |
| ZZZZZZ                   | 200699       | 5.78 | 104801       | 7.99 | 151566       | 10.47 | 108941       | 15.37 | 99384        | 17.88 |
| ZZZZZZ                   | 204278       | 5.78 | 103470       | 7.98 | 155695       | 10.46 | 112382       | 15.37 | 104973       | 17.87 |
| ZZZZZZ                   | 193965       | 5.80 | 104114       | 7.99 | 146008       | 10.47 | 107095       | 15.38 | 100624       | 17.88 |
| ZZZZZZ                   | 206535       | 5.78 | 109776       | 7.99 | 161444       | 10.47 | 111304       | 15.38 | 99694        | 17.88 |
| ZZZZZZ                   | 182496       | 5.78 | 92346        | 7.98 | 139971       | 10.46 | 96550        | 15.37 | 86505        | 17.87 |
| ZZZZZZ                   | 206512       | 5.78 | 103440       | 7.98 | 157747       | 10.46 | 113583       | 15.38 | 105479       | 17.88 |
| ZZZZZZ                   | 213932       | 5.78 | 109182       | 7.98 | 162367       | 10.46 | 117324       | 15.38 | 105667       | 17.88 |
| ZZZZZZ                   | 207961       | 5.78 | 107567       | 7.98 | 164075       | 10.46 | 117743       | 15.38 | 106475       | 17.88 |
| F57465-6                 | 200990       | 5.78 | 102674       | 7.98 | 157910       | 10.46 | 111641       | 15.37 | 98288        | 17.88 |
| OP25062-MS               | 217770       | 5.78 | 112227       | 7.98 | 168418       | 10.46 | 115821       | 15.37 | 105223       | 17.88 |
| OP25062-MSD              | 213919       | 5.78 | 109931       | 7.98 | 167273       | 10.46 | 118889       | 15.37 | 105921       | 17.88 |
| ZZZZZZ                   | 212221       | 5.78 | 107211       | 7.98 | 164430       | 10.46 | 117415       | 15.37 | 104894       | 17.88 |
| ZZZZZZ                   | 205216       | 5.78 | 105522       | 7.98 | 159632       | 10.46 | 111125       | 15.38 | 100575       | 17.88 |
| F57467-1                 | 210803       | 5.78 | 105454       | 7.98 | 161172       | 10.46 | 113785       | 15.37 | 101928       | 17.88 |
| F57467-2                 | 199847       | 5.78 | 101701       | 7.98 | 154481       | 10.46 | 108155       | 15.37 | 97583        | 17.88 |
| F57467-3                 | 199670       | 5.78 | 102133       | 7.98 | 156812       | 10.46 | 112287       | 15.37 | 101552       | 17.88 |
| F57467-4                 | 199939       | 5.78 | 100416       | 7.98 | 155145       | 10.46 | 111108       | 15.37 | 99759        | 17.88 |

= Naphthalene-d8 IS 1

IS 2 = Acenaphthene-D10

= Phenanthrene-d10 IS 3

= Chrysene-d12 IS 4

IS 5 = Perylene-d12

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



## Semivolatile Internal Standard Area Summary

Job Number: F57467

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

Check Std:

SR637-CC633

Injection Date: 05/16/08

Lab File ID: Instrument ID: GCMSR

R13742.D

Injection Time: 14:12

Method:

SW846 8270C BY SIM

|                          | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
|--------------------------|--------|------|--------|------|--------|-------|--------|-------|--------|-------|
|                          | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| Check Std                | 235852 | 5.76 | 119878 | 7.96 | 176306 | 10.43 | 116394 | 15.34 | 94846  | 17.84 |
| Upper Limit <sup>a</sup> | 471704 | 6.26 | 239756 | 8.46 | 352612 | 10.93 | 232788 | 15.84 | 189692 | 18.34 |
| Lower Limit b            | 117926 | 5.26 | 59939  | 7.46 | 88153  | 9.93  | 58197  | 14.84 | 47423  | 17.34 |
| Lab                      | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
| Sample ID                | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| OP25062-MB               | 259825 | 5.76 | 129402 | 7.96 | 187376 | 10.43 | 122877 | 15.35 | 103868 | 17.85 |
| ZZZZZZ                   | 232514 | 5.76 | 119443 | 7.96 | 175244 | 10.43 | 118847 | 15.35 | 107584 | 17.84 |
| ZZZZZZ                   | 231445 | 5.76 | 118637 | 7.95 | 172873 | 10.43 | 115951 | 15.35 | 105028 | 17.85 |
| ZZZZZZ                   | 226003 | 5.76 | 109458 | 7.97 | 171804 | 10.46 | 121443 | 15.36 | 113258 | 17.86 |
| ZZZZZZ                   | 256441 | 5.76 | 132135 | 7.96 | 197471 | 10.43 | 134338 | 15.35 | 123030 | 17.85 |
| ZZZZZZ                   | 252874 | 5.76 | 132641 | 7.96 | 195310 | 10.43 | 134635 | 15.35 | 120855 | 17.85 |
| F57467-5                 | 270168 | 5.76 | 137224 | 7.95 | 205199 | 10.43 | 144810 | 15.35 | 134706 | 17.85 |
| OP25084-MB               | 249962 | 5.76 | 124159 | 7.95 | 182021 | 10.42 | 119746 | 15.34 | 104167 | 17.85 |
| ZZZZZZ                   | 211329 | 5.76 | 110223 | 7.95 | 165415 | 10.43 | 115353 | 15.36 | 104000 | 17.87 |
| ZZZZZZ                   | 236129 | 5.77 | 128059 | 7.98 | 188300 | 10.45 | 133597 | 15.36 | 123391 | 17.86 |

IS 1 = Naphthalene-d8

IS 2 = Acenaphthene-D10

IS 3 = Phenanthrene-d10

**IS 4** = Chrysene-d12

= Perylene-d12 IS 5

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



## Semivolatile Internal Standard Area Summary

Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Check Std:

SW2081-CC2079

Injection Date: 05/20/08

Lab File ID: Instrument ID: GCMSW

W040621.D

Injection Time: 12:40 Method:

SW846 8270C BY SIM

|                          | IS 1<br>AREA | RT   | IS 2<br>AREA | RT   | IS 3<br>AREA | RT   | IS 4<br>AREA | RT    | IS 5<br>AREA | RT    |
|--------------------------|--------------|------|--------------|------|--------------|------|--------------|-------|--------------|-------|
| Check Std                | 266669       | 5.37 | 139136       | 7.44 | 202470       | 9.83 | 136794       | 14.68 | 119645       | 17.16 |
| Upper Limit <sup>a</sup> | 533338       | 5.87 | 278272       | 7.94 | 404940       |      | 273588       | 15.18 | 239290       | 17.66 |
| Lower Limit b            | 133335       | 4.87 | 69568        | 6.94 | 101235       | 9.33 | 68397        |       | 59823        | 16.66 |
| Lab                      | IS 1         | ···· | IS 2         |      | IS 3         |      | IS 4         |       | IS 5         |       |
| Sample ID                | AREA         | RT   | AREA         | RT   | AREA         | RT   | AREA         | RT    | AREA         | RT    |
| OP25106-MB               | 315215       | 5.37 | 165167       | 7.44 | 242609       | 9.83 | 167531       | 14.68 | 152654       | 17.16 |
| OP25106-BS               | 292583       | 5.37 | 150089       | 7.44 | 216013       | 9.83 | 148202       | 14.68 | 133292       | 17.15 |
| ZZZZZZ                   | 293607       | 5.36 | 153540       | 7.44 | 221907       | 9.83 | 157191       | 14.68 | 142683       | 17.15 |
| ZZZZZZ                   | 327357       | 5.37 | 171621       | 7.44 | 248445       | 9.83 | 173199       | 14.68 | 155375       | 17.16 |
| F57485-3                 | 327812       | 5.36 | 172177       | 7.44 | 251085       | 9.83 | 171320       | 14.68 | 152814       | 17.16 |
| OP25106-MS               | 332884       | 5.37 | 173446       | 7.44 | 255374       | 9.83 | 176164       | 14.68 | 158888       | 17.16 |
| OP25106-MSD              | 336440       | 5.37 | 177973       | 7.44 | 256948       | 9.83 | 176636       | 14.68 | 159034       | 17.16 |
| OP25102-MB               | 276486       | 5.36 | 146543       | 7.44 | 213158       | 9.82 | 143768       | 14.68 | 125726       | 17.15 |
| F57608-2                 | 303457       | 5.37 | 161868       | 7.45 | 204194       | 9.86 | 126276       | 14.73 | 108514       | 17.23 |
| OP25102-MS               | 277511       | 5.37 | 144844       | 7.45 | 202238       | 9.84 | 135154       | 14.72 | 119370       | 17.20 |
| OP25102-MSD              | 285199       | 5.37 | 145870       | 7.46 | 195086       | 9.87 | 121876       | 14.74 | 98896        | 17.23 |
| ZZZZZZ                   | 304104       | 5.37 | 163189       | 7.44 | 230529       | 9.84 | 149242       | 14.70 | 124415       | 17.18 |
| ZZZZZZ                   | 307376       | 5.37 | 164069       | 7.44 | 228850       | 9.84 | 147668       | 14.72 | 121104       | 17.20 |
| ZZZZZZ                   | 351157       | 5.36 | 186123       | 7.44 | 258517       | 9.84 | 163838       | 14.72 | 133227       | 17.21 |
| F57467-6                 | 351423       | 5.37 | 200616       | 7.44 | 289932       | 9.84 | 176546       | 14.70 | 148986       | 17.17 |
| F57467-7                 | 347401       | 5.36 | 192711       | 7.44 | 278797       | 9.84 | 178189       | 14.70 | 155283       | 17.17 |
| ZZZZZZ                   | 362445       | 5.37 | 201531       | 7.44 | 294629       | 9.84 | 194967       |       | 164275       | 17.18 |
| ZZZZZZ                   | 387568       | 5.37 | 202820       | 7.44 | 296643       | 9.84 | 190680       | 14.70 | 159416       | 17.17 |
| ZZZZZZ                   | 398265       | 5.37 | 205219       | 7.44 | 293307       | 9.84 | 187407       | 14.69 | 159460       | 17.18 |
| ZZZZZZ                   | 297375       | 5.40 | 193142       | 7.45 | 267051       | 9.84 | 161782       | 14.69 | 136449       | 17.18 |
| ZZZZZZ                   | 363477       | 5.37 | 191220       | 7.44 | 272031       | 9.84 | 177717       | 14.69 | 148298       | 17.17 |
| ZZZZZZ                   | 360286       | 5.37 | 188861       | 7.44 | 267689       | 9.84 | 177246       | 14.70 | 157264       | 17.18 |
| ZZZZZZ                   | 348899       | 5.37 | 181501       | 7.44 | 262598       | 9.84 | 170029       | 14.70 | 143436       | 17.17 |
| ZZZZZZ                   | 374831       | 5.37 | 195321       | 7.44 | 276188       | 9.84 | 177078       | 14.70 | 149594       | 17.17 |
| ZZZZZZ                   | 357565       | 5.37 | 189242       | 7.44 | 272775       | 9.84 | 177139       | 14.69 | 139887       | 17.18 |

IS 1 = Naphthalene-d8 IS 2 = Acenaphthene-D10 IS 3 = Phenanthrene-d10

IS 4 = Chrysene-d12

IS 5 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



## Semivolatile Internal Standard Area Summary

F57467 Job Number:

Account:

**TETRPAPT Tetra Tech NUS** 

Project:

NAS Key West, Key West, FL

Check Std:

SW2082-CC2079

Injection Date: 05/21/08

Lab File ID:

W040653.D

Injection Time: 14:20

Instrument ID: GCMSW

Method:

SW846 8270C BY SIM

|               | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
|---------------|--------|------|--------|------|--------|-------|--------|-------|--------|-------|
|               | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| Check Std     | 319552 | 5.33 | 165682 | 7.39 | 238393 | 9.77  | 170884 | 14.63 | 149462 | 17.09 |
| Upper Limit a | 639104 | 5.83 | 331364 | 7.89 | 476786 | 10.27 | 341768 | 15.13 | 298924 | 17.59 |
| Lower Limit b | 159776 | 4.83 | 82841  | 6.89 | 119197 | 9.27  | 85442  | 14.13 |        | 16.59 |
| Lab           | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
| Sample ID     | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| OP25131-BS    | 275716 | 5.33 | 143690 | 7.39 | 207136 | 9.77  | 147957 | 14.62 | 132893 | 17.09 |
| OP25131-MB    | 304322 | 5.32 | 158624 | 7.39 | 229810 | 9.77  | 166184 |       | 151455 | 17.09 |
| ZZZZZZ        | 314424 | 5.33 | 164788 | 7.39 | 232623 | 9.77  | 160344 | 14.63 | 132855 | 17.09 |
| ZZZZZZ        | 297564 | 5.34 | 155003 | 7.40 | 215029 | 9.80  | 129134 | 14.66 | 107553 | 17.15 |
| ZZZZZZ        | 295729 | 5.33 | 154553 | 7.40 | 215340 | 9.79  | 129390 |       | 110398 | 17.13 |
| ZZZZZZ        | 347748 | 5.33 | 179850 | 7.40 | 233960 | 9.80  | 126519 | 14.67 | 96938  | 17.16 |
| ZZZZZZ        | 309145 | 5.34 | 158646 | 7.40 | 216371 | 9.80  | 128174 | 14.67 | 102459 | 17.16 |
| ZZZZZZ        | 310012 | 5.34 | 157632 | 7.40 | 212852 |       | 129302 |       | 105465 | 17.14 |
| ZZZZZZ        | 354594 | 5.34 | 183363 | 7.40 | 252558 | 9.80  | 156524 | 14.66 | 127299 | 17.15 |
| OP25106-MB    | 317684 | 5.34 | 168920 | 7.40 | 245537 | 9.80  | 180283 | 14.66 | 151504 | 17.14 |
| ZZZZZZ        | 305194 | 5.34 | 160411 | 7.40 | 238353 | 9.80  | 169198 | 14.66 | 134940 | 17.14 |
| ZZZZZZ        | 318055 | 5.34 | 163463 | 7.40 | 226247 | 9.80  | 147662 | 14.66 | 122514 | 17.14 |
| ZZZZZZ        | 346387 | 5.34 | 175914 | 7.40 | 254603 | 9.80  | 177965 |       | 146031 | 17.16 |
| ZZZZZZ        | 321065 | 5.34 | 168032 | 7.40 | 240228 | 9.80  | 169359 |       | 136991 | 17.15 |

= Naphthalene-d8 IS 1 IS 2 = Acenaphthene-D10

IS 3 = Phenanthrene-d10

IS 4 = Chrysene-d12

IS 5 = Perylene-d12

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

## Semivolatile Surrogate Recovery Summary Job Number: F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Method: FLORIDA-PRO

Matrix: AQ

#### Samples and QC shown here apply to the above method

| Lab         | Lab       |          |
|-------------|-----------|----------|
| Sample ID   | File ID   | S1 a     |
| F57467-1    | IJ47335.D | 81.0     |
| F57467-2    | IJ47350.D | 92.0     |
| F57467-3    | IJ47337.D | 121.0    |
| F57467-4    | IJ47338.D | 119.0    |
| F57467-5    | IJ47339.D | 99.0     |
| F57467-6    | IJ47340.D | 93.0     |
| F57467-7    | IJ47349.D | 80.0     |
| OP25066-BS  | IJ47324.D | 106.0    |
| OP25066-MB  | IJ47325.D | 117.0    |
| OP25066-MB  | IJ47348.D | 75.0     |
| OP25066-MS  | IJ47329.D | 103.0    |
| OP25066-MSD | IJ47330.D | 109.0    |
| Surrogate   |           | Recovery |
| Compounds   |           | Limits   |

S1 = o-Terphenyl

38-122%

(a) Recovery from GC signal #1

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Check Std: Lab File ID: GIJ1780-CC1772

Injection Date: 05/17/08

IJ47321.D Instrument ID: GCIJ

Injection Time: 05:11

Method:

FLORIDA-PRO

S1 a RT

| Check Std        |                |                  |                  | 5.43                  |
|------------------|----------------|------------------|------------------|-----------------------|
| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | S1 <sup>a</sup><br>RT |
| OP25066-BS       | IJ47324.D      | 05/17/08         | 06:17            | 5.43                  |
| OP25066-MB       | IJ47325.D      | 05/17/08         | 06:39            | 5.43                  |
| ZZZZZZ           | IJ47326.D      | 05/17/08         | 07:01            | 5.43                  |
| ZZZZZZ           | IJ47327.D      | 05/17/08         | 07:23            | 5.43                  |
| F57466-3         | IJ47328.D      | 05/17/08         | 07:45            | 5.43                  |
| OP25066-MS       | IJ47329.D      | 05/17/08         | 08:07            | 5.43                  |
| OP25066-MSD      | IJ47330.D      | 05/17/08         | 08:29            | 5.43                  |
| ZZZZZZ           | IJ47331.D      | 05/17/08         | 08:51            | 5.44                  |
| ZZZZZZ           | IJ47332.D      | 05/17/08         | 09:13            | 5.44                  |

Surrogate Compounds

 $S1 = o ext{-}Terphenyl$ 

(a) Retention time from GC signal #1

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Check Std:

GIJ1780-CC1772

Injection Date:

05/17/08

Lab File ID: Instrument ID: GCIJ

IJ47333.D

Injection Time: 09:35

Method:

FLORIDA-PRO

S1 a RT

| Check Std        |                |                  |                  | 5.43                  |  |  |  |  |
|------------------|----------------|------------------|------------------|-----------------------|--|--|--|--|
| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | S1 <sup>a</sup><br>RT |  |  |  |  |
| F57467-1         | IJ47335.D      | 05/17/08         | 10:19            | 5.43                  |  |  |  |  |
| F57467-3         | IJ47337.D      | 05/17/08         | 11:03            | 5.43                  |  |  |  |  |
| F57467-4         | IJ47338.D      | 05/17/08         | 11:25            | 5.43                  |  |  |  |  |
| F57467-5         | IJ47339.D      | 05/17/08         | 11:47            | 5.43                  |  |  |  |  |
| F57467-6         | IJ47340.D      | 05/17/08         | 12:09            | 5.43                  |  |  |  |  |
| GIJ1780-ECC      | 1772IJ47342.D  | 05/17/08         | 12:53            | 5.43                  |  |  |  |  |
| =                | . =            |                  |                  | 271                   |  |  |  |  |

Surrogate

Compounds

 $S1 = o ext{-}Terphenyl$ 

(a) Retention time from GC signal #1

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Check Std:

GIJ1781-CC1772

Injection Date:

05/19/08

Lab File ID:

IJ47345.D

Injection Time: 09:25

Instrument ID: GCIJ

Method:

FLORIDA-PRO

S1 a RT

| Check Std  |           |          |          | 5.43            |  |
|------------|-----------|----------|----------|-----------------|--|
| Lab        | Lab       | Date     | Time     | S1 <sup>a</sup> |  |
| Sample ID  | File ID   | Analyzed | Analyzed | RT              |  |
| OP25066-MB | IJ47348.D | 05/19/08 | 10:32    | 5.43            |  |
| F57467-7   | IJ47349.D | 05/19/08 | 10:54    | 5.43            |  |
| F57467-2   | IJ47350.D | 05/19/08 | 11:16    | 5.43            |  |

Surrogate Compounds

S1 = o-Terphenyl

(a) Retention time from GC signal #1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57467

Page 1 of 1

Account: Project:

**TETRPAPT Tetra Tech NUS** NAS Key West, Key West, FL

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5, F57467-6, F57467-7

| CAS No. | Compound             | F57466-3<br>mg/l Q | Spike<br>mg/l | MS<br>mg/l | MS<br>% | MSD<br>mg/l | MSD<br>% | RPD | Limits<br>Rec/RPD |
|---------|----------------------|--------------------|---------------|------------|---------|-------------|----------|-----|-------------------|
|         | TPH (C8-C40)         | 1.68               | 1.63          | 3.55       | 114*    | 3.65        | 121*     | 3   | 54-110/28         |
| CAS No. | Surrogate Recoveries | MS                 | MSD           | F57        | 466-3   | Limits      |          |     |                   |
| 84-15-1 | o-Terphenyl          | 103%               | 109%          | 100        | %       | 38-1229     | 6        |     |                   |





Blank Spike Summary

Job Number:

F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample OP25066-BS

File ID IJ47324.D

DF 1

By JB

Prep Date 05/14/08

Prep Batch OP25066

Analytical Batch

GIJ1780

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5, F57467-6, F57467-7

CAS No.

Compound

Spike **BSP** mg/l mg/l

0.782

**BSP** %

Limits

TPH (C8-C40)

0.85

Analyzed

05/17/08

92

54-110

CAS No.

Surrogate Recoveries

**BSP** 

Limits

84-15-1

o-Terphenyl

106%

38-122%

Method Blank Summary F57467

Job Number:

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample OP25066-MB

File ID IJ47325.D DF Analyzed 05/17/08

By JΒ

Prep Date 05/14/08

Prep Batch OP25066

**Analytical Batch** 

GIJ1780

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5, F57467-6, F57467-7

CAS No.

Compound

Result

RL

MDL

0.17

Units Q

TPH (C8-C40)

o-Terphenyl

ND

0.25

mg/l

CAS No.

84-15-1

Surrogate Recoveries

Limits

117%

38-122%

Method Blank Summary

Job Number:

F57467

Account: Project:

TETRPAPT Tetra Tech NUS NAS Key West, Key West, FL

Sample OP25066-MB

File ID IJ47348.D

DF 1

Analyzed 05/19/08

By JB

Prep Date 05/14/08

Prep Batch OP25066

**Analytical Batch** 

GIJ1781

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57467-1, F57467-2, F57467-3, F57467-4, F57467-5, F57467-6, F57467-7

CAS No.

Compound

Result

RL

MDL

Units Q

TPH (C8-C40)

ND

0.25

0.17

mg/l

CAS No.

Surrogate Recoveries

Limits

84-15-1

o-Terphenyl

75%

38-122%

**Initial Calibration Summary** 

Page 1 of 1

Job Number: F57467 Account:

**TETRPAPT Tetra Tech NUS** 

Sample:

GIJ1772-ICC1772 IJ46879.D

Project:

NAS Key West, Key West, FL

Lab FileID:

Response Factor Report FID 1

: C:\HPCHEM\1\METHODS\FL PRO F.M (Chemstation Integrator)

: TPH by FL PRO

Last Update : Mon May 05 13:33:36 2008

Response via : Initial Calibration

Calibration Files

255 =IJ46876.D 340 =IJ46877.D 680 =IJ46878.D 1020=IJ46879.D 1360=IJ46880.D 1700=IJ46881.D 2125=IJ46882.D 4250=IJ46883.D

255 340 680 1020 1360 1700 2125 4250 Avg %RSD Compound 

1) O-TERPHENYL 3.650 3.617 3.546 3.555 3.495 2.834 3.449 E4 8.89

2) TPH (C8-C40) 3.632 3.435 3.400 3.354 3.286 2.654 3.280 3.265 3.288 E4 8.60 \_\_\_\_\_\_

(#) = Out of Range ### Number of calibration levels exceeded format ###

FL PRO F.M

Tue May 06 09:29:38 2008

Project:

Page 1 of 1

Continuing Calibration Summary

Job Number: F57467 Account:

TETRPAPT Tetra Tech NUS

NAS Key West, Key West, FL

GIJ1780-CC1772 Sample: IJ47321.D Lab FileID:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0516PRO\IJ47321.D

Vial: 45

Acg On : 17 May 2008 5:11 am

Operator: julieb

Sample : cc1772-1020

Inst : FID 1

: op25075,gij1780,30.0,,,1,1,soil Misc

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO
Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound \_\_\_\_\_\_ 1 S O-TERPHENYL 60.000 64.322 -7.2 104 0.00 5.38- 5.48 2 H TPH (C8-C40) 1020.000 1099.490 -7.8 106 0.00 2.24-10.83 

(#) = Out of Range \(\pi\_j = Out of Kange \quad \text{SPCC's out} = 0 \quad \text{CCC'}\\
\text{IJ46879.D FL\_PRO\_F.M} \quad \text{Mon May 19 09:16:33 2008}

SPCC's out = 0 CCC's out = 0

Continuing Calibration Summary Job Number: F57467

TETRPAPT Tetra Tech NUS

Sample: Lab FileID: GIJ1780-CC1772

Page 1 of 1

Account: Project:

NAS Key West, Key West, FL

IJ47322.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0516PRO\IJ47322.D

Vial: 46

Acq On : 17 May 2008 5:33 am Operator: julieb

Sample

: cc1772-340

Inst : FID 1

Misc

: op25075,gij1780,30.0,,,1,1,soil

Multiplr: 1.00

IntFile : events.e

Method

: C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
: TPH by FL\_PRO

Title

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25%

Max. Rel. Area: 150%

| Compound                            | Amount | Calc.             | %Drift         | Area% | Dev(min) | RT Window                |
|-------------------------------------|--------|-------------------|----------------|-------|----------|--------------------------|
| 1 S O-TERPHENYL<br>2 H TPH (C8-C40) | 20.000 | 22.117<br>396.345 | -10.6<br>-16.6 |       |          | 5.38- 5.48<br>2.24-10.83 |

(#) = Out of Range IJ46877.D FL\_PRO\_F.M Mon May 19 09:16:55 2008

SPCC's out = 0 CCC's out = 0

Continuing Calibration Summary
Job Number: F57467

Account:

Project:

TETRPAPT Tetra Tech NUS

NAS Key West, Key West, FL

Sample: Lab FileID: GIJ1780-CC1772

IJ47333.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0516PRO\IJ47333.D

9:35 am

Vial: 56

Acq On : 17 May 2008

Operator: julieb

Sample

: cc1772-1020

Inst : FID 1

Misc

: op25066,gij1780,1000,,,1,1,water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window

-1 S O-TERPHENYL 60.000 65.580 -9.3 106 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1111.461 -9.0 107 0.00 2.24-10.83

\_\_\_\_\_

(#) = Out of Range

SPCC's out = 0 CCC's out = 0 (#) = Out of Range SPEC'S out = 0 CCC' IJ46879.D FL\_PRO\_F.M Mon May 19 09:16:33 2008

Continuing Calibration Summary
Job Number: F57467

Account:

TETRPAPT Tetra Tech NUS

Project:

NAS Key West, Key West, FL

Sample: Lab FileID:

GII1780-ECC1772

1147342.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0516PRO\IJ47342.D

Vial: 64

Acq On : 17 May 2008 12:53 pm

Operator: julieb Inst : FID 1

Sample

: ecc1772-1020 : op25066,gij1780,1000,,,1,1,water

Multiplr: 1.00

Misc

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window Compound 1 S O-TERPHENYL 60.000 64.607 -7.7 104 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1091.452 -7.0 105 0.00 2.24-10.83 2 H TPH (C8-C40) \_\_\_\_\_

(#) = Out of Range (#) = Out or Range SPCC's out = 0 CCC's Ou

SPCC's out = 0 CCC's out = 0

Continuing Calibration Summary

Sample:

Page 1 of 1

Job Number: F57467

TETRPAPT Tetra Tech NUS

Lab FileID:

GIJ1781-CC1772 IJ47345.D

Account: Project:

NAS Key West, Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0519PRO\IJ47345.D

Vial: 2

Acq On : 19 May 2008 9:25 am Operator: julieb

Sample : cc1772-1020

Inst : FID 1

Misc : op25066,gij1781,1000,,,1,1,water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_

1 S O-TERPHENYL 60.000 52.687 12.2 85 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 884.558 13.3 85 0.00 2.24-10.83 2 H TPH (C8-C40) \_\_\_\_\_

(#) = Out of Range

SPCC's out = 0 CCC's out = 0 IJ46879.D FL PRO F.M Wed May 21 09:19:47 2008

Continuing Calibration Summary
Job Number: F57467

Account:

Project:

**TETRPAPT Tetra Tech NUS** 

NAS Key West, Key West, FL

Sample:

GII1781-CC1772

Lab FileID: IJ47346.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0519PRO\IJ47346.D

Vial: 3

Acq On : 19 May 2008 9:47 am Operator: julieb

Sample

: cc1772-340

Inst : FID 1

Misc : op25066, gij1781, 1000, , , 1, 1, water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008

Response via: Multiple Level Calibration

Min. RRF

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

%Drift Area% Dev(min)RT Window

Compound -

Amount Calc.

1 S O-TERPHENYL 20.000 18.201 9.0 87 0.00 5.38-5.48 2 H TPH (C8-C40) 340.000 316.725 6.8 89 0.00 2.24-10.83 \_\_\_\_\_

\_\_\_\_\_\_

(#) = Out of Range IJ46877.D FL PRO F.M Wed May 21 09:20:11 2008

SPCC's out = 0 CCC's out = 0

Continuing Calibration Summary
Job Number: F57467

Account:

Project:

**TETRPAPT Tetra Tech NUS** 

NAS Key West, Key West, FL

Sample:

GII1781-CC1772

Lab FileID: II47351.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0519PRO\IJ47351.D

Vial: 7

Acq On : 19 May 2008 11:38 am

Operator: julieb

: cc1772-1020 Sample

Misc : op25074,gij1781,1030,,,1,1,water

Inst : FID 1

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May  $1\overline{6}$  11:20:03 2008

Response via: Multiple Level Calibration

Min. RRF

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window \_\_\_\_\_

1 S O-TERPHENYL 60.000 64.211 -7.0 104 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1082.768 -6.2 104 0.00 2.24-10.83 \_\_\_\_\_

(#) = Out of Range IJ46879.D FL PRO F.M Wed May 21 09:19:47 2008

SPCC's out = 0 CCC's out = 0



#### **Tetra Tech NUS**

#### INTERNAL CORRESPONDENCE

TO:

C. BRYAN

DATE:

**JULY 28, 2008** 

FROM:

TREVER SHEETS

COPIES:

DV FILE

SUBJECT:

ORGANIC DATA VALIDATION- VOC / PAH / TPH

CTO 0095, NAS KEY WEST

**SDG F57525** 

SAMPLES:

2/Aqueous/VOC/PAH/TPH

KWSM-GW-DRUM-1

KWSM-BCTF-GW-DRUM-3

2/Soil/VOC/PAH/TPH

KWSM-SO-GW-DRUM-2

KWSM-SO-DRUM-4

#### **OVERVIEW**

The sample set for CTO 0095 NAS Key West, SDG F57525 consists of four (4) aqueous environmental samples. No field duplicate pairs were associated with this SDG.

Samples were analyzed for volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAH), and total petroleum hydrocarbons (TPH).

The samples were collected by TetraTech NUS on May 14, 2008 and analyzed by Accutest Laboratories. All analyses were conducted in accordance with SW-846 Methods 8260B, 8270C, and Florida-PRO analysis and reporting protocols. The data contained in this SDG were validated with regard to the following parameters:

- Data Completeness
  - Holding Times
    - Initial/Continuing Calibrations
      - Laboratory Method Blank Results
    - Detection Limits

The symbol (\*) indicates that quality control criteria were met for this parameter. Problems affecting data quality are discussed below; documentation supporting these findings is presented in Appendix C. Qualified Analytical results are presented in Appendix A. Results as reported by the laboratory are presented in Appendix B.

The text of this report is formatted to address only gross non-compliances resulting in the rejection of data and the elimination of false positives.

#### <u>VOC</u>

The initial calibration percent relative standard deviation (%RSD) for methylene chloride was greater than the 30% quality control limit but less than 90% on instrument GCMSG on 5/5/08. No actions were necessary as no positive results were reported for this compound in samples KWSM-SO-DRUM-2 and KWSM-SO-DRUM-4 and non-detects are not impacted for this noncompliance in a limited data review.

The continuing calibration percent difference (%D) for 2-chloroethyl vinyl ether and acrolein was greater than the 25% quality control limit but less than 90% on instrument GCMSG on 5/19/08 at 9:54. No actions were necessary as no positive results were reported for this compound in samples KWSM-SO-DRUM-2 and KWSM-SO-DRUM-4 and non-detects are not impacted for this noncompliance in a limited data review.

The initial calibration %RSD for 2-chloroethyl vinyl ether was greater than the 30% quality control limit but less than 90% on instrument GCMSJ on 5/27/08. No actions were necessary as no positive results were reported for this compound in samples KWSM-BCTF-GW-DRUM-3 and KWSM-GW-DRUM-1 and nondetects are not impacted for this noncompliance in a limited data review.

The laboratory control sample VG1912-BS yielded a high percent recovery for 2-chloroethyl vinyl ether. No actions were necessary as no positive results were reported for this compound in the affected samples and this is a limited data review.

The internal standard tert butyl alcohol-D10 was low in sample KWSM-SO-DRUM-2. No action was necessary from this noncompliance alone as this is a limited data review.

The following compound was detected in the method blank at the following maximum concentration:

|                    | <u>Maximum</u> | Action  |
|--------------------|----------------|---------|
| Compound           | Concentration  | Level   |
| Methylene Chloride | 7.0 ug/L       | 70 ug/L |

An action level of 10X the maximum concentration was used to evaluate samples KWSM-SO-DRUM-2 and KWSM-SO-DRUM-4 for blank contamination. Sample aliquot and dilution factors, if applicable, were taken into consideration when evaluating for blank contamination. No action was necessary because methylene chloride not detected in associated samples.

#### Polynucler Aromatic Hydrocarbons

Sample KWSM-SO-DRUM-2 was analyzed at a 4 fold dilution due to concentrations of benzo(b)fluoranthene and benzo(g,h,i)perylene greater than the linear calibration range of the instrument. No undiluted samples were provided and this accounts for the elevated detection limits for the non-detected compounds.

Sample KWSM-SO-DRUM-4 was analyzed at a 4 fold dilution due to concentration of benzo(b)fluoranthene and benzo(g,h,i)perylene greater than the linear calibration range of the instrument. No undiluted samples were provided and this accounts for the elevated detection limits for the non-detected compounds.

#### Total Petroleum Hydrocarbons

No qualification of the data was necessary.

#### **EXECUTIVE SUMMARY**

**Laboratory Performance Issues:** The VOC fractions had initial calibration percent relative standard deviation noncompliances in 4 samples on 5/5/08 and 5/27/08 with instruments GCMSG and GCMSJ. Continuing calibration percent difference noncompliance in 2 samples on 5/19/08 at 9:54 with instrument GCMSG.

Other Factors Affecting Data Quality: Two samples analyzed at a 4 fold dilution.

The data for these analyses were reviewed with reference to the EPA Functional Guidelines for Organic Data Validation (10/99), and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (January 2006). The text of this report has been formulated to address only those problem areas affecting data quality.

"I attest that the data referenced herein were validated according to the agreed upon validation criteria as specified in the DoD QSM for Environmental Laboratories.

Tetra Tech NUS Trever Sheets Data Validator

TetraTech NUS

Joseph A. Samchuck
Data Validation Quality Assurance Officer

#### Attachments:

Appendix A – Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

# APPENDIX A QUALIFIED ANALYTICAL RESULTS

#### **Data Validation Qualifier Codes:**

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (e.g. % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = GFAA PDS - GFAA MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (e.g. base-line drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can be any number of issues; e.g. poor chromatography, interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = % Difference between columns/detectors >25% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 sigma deviation is greater than sample activity

SDG: F57525 MEDIA: SOIL DATA FRACTION: OV

 nsample
 KWSM-SO-DRUM-2

 samp\_date
 5/14/2008

 lab\_id
 F57525-2

 qc\_type
 NM

 units
 UG/KG

 Pct\_Solids
 89.4

DUP\_OF:

| DOP_OF:                   |        |             |             |              |
|---------------------------|--------|-------------|-------------|--------------|
| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
| 1,1,1-TRICHLOROETHANE     | 0.93   | U           | U           |              |
| 1,1,2,2-TETRACHLOROETHANE | 1.2    | U           | U           |              |
| 1,1,2-TRICHLOROETHANE     | 0.93   | U           | U           |              |
| 1,1-DICHLOROETHANE        | 1      | U           | U           |              |
| 1,1-DICHLOROETHENE        | 0.93   | U           | U           |              |
| 1,2-DICHLOROBENZENE       | 0.93   | U           | U           |              |
| 1,2-DICHLOROETHANE        | 0.93   | U           | U           |              |
| 1,2-DICHLOROPROPANE       | 1.2    | U           | U           |              |
| 1,3-DICHLOROBENZENE       | 0.93   | U           | U           |              |
| 1,4-DICHLOROBENZENE       | 0.93   | U           | U           |              |
| 2-CHLOROETHYL VINYL ETHER | 4.7    | U           | U           |              |
| ACROLEIN                  | 10     | U           | U           |              |
| ACRYLONITRILE             | 7.4    | U           | U           |              |
| BENZENE                   | 0.93   | U           | U           |              |
| BROMODICHLOROMETHANE      | 0.93   | U           | U           |              |
| BROMOFORM                 | 0.93   | Ū           | U           |              |
| BROMOMETHANE              | 1.7    | U           | U           |              |
| CARBON TETRACHLORIDE      | 1.2    | U           | U           |              |
| CHLOROBENZENE             | 0.93   | U           | U           |              |
| CHLORODIBROMOMETHANE      | 0.93   | U           | U           |              |
| CHLOROETHANE              | 2.4    | U           | U           |              |
| CHLOROFORM                | 0.93   | U           | U           |              |
| CHLOROMETHANE             | 1.9    | Ü           | U           |              |
| CIS-1,2-DICHLOROETHENE    | 0.93   | U           | U           |              |
| CIS-1,3-DICHLOROPROPENE   | 0.93   | U           | U           |              |
| DICHLORODIFLUOROMETHANE   | 1.9    | U           | U           |              |
| ETHYLBENZENE              | 0.93   | U           | U           |              |
| METHYL TERT-BUTYL ETHER   | 0.93   | U           | U           |              |
| METHYLENE CHLORIDE        | 4.7    | U           | Ü           |              |
| TETRACHLOROETHENE         | 0.93   | U           | Ü           |              |
| TOLUENE                   | 0.93   | U           | U           |              |

2 U

U

| nsample    | KWSM-SO-DRUM-2 |
|------------|----------------|
| samp_date  | 5/14/2008      |
| lab_id     | F57525-2       |
| qc_type    | NM             |
| units      | UG/KG          |
| Pct_Solids | 89.4           |
| DUP_OF:    |                |

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.93   | U           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.93   | U           | U           |              |
| TRICHLOROETHENE           | 0.93   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 1.5    | U           | U           |              |
| VINYL CHLORIDE            | 1.3    | U           | U           |              |

| nsample    | KWSM-SO-DRUM-4 |
|------------|----------------|
| samp_date  | 5/14/2008      |
| lab_id     | F57525-4       |
| qc_type    | NM             |
| units      | UG/KG          |
| Pct_Solids | 87,3           |
| DUP_OF:    |                |
|            |                |

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| 1,1,1-TRICHLOROETHANE     | 1.1    | U           | U           |              |
| 1,1,2,2-TETRACHLOROETHANE | 1.5    | U           | Ū           |              |
| 1,1,2-TRICHLOROETHANE     | 1.1    | U           | U           |              |
| 1,1-DICHLOROETHANE        | 1.3    | U           | U           |              |
| 1,1-DICHLOROETHENE        | 1.1    | U           | U           |              |
| 1,2-DICHLOROBENZENE       | 1.1    | U           | U           |              |
| 1,2-DICHLOROETHANE        | 1.1    | U           | Ū           |              |
| 1,2-DICHLOROPROPANE       | 1.5    | U           | U           |              |
| 1,3-DICHLOROBENZENE       | 1.1    | U           | U           |              |
| 1,4-DICHLOROBENZENE       | 1.1    | U           | U           |              |
| 2-CHLOROETHYL VINYL ETHER | 5.7    | U           | U           |              |
| ACROLEIN                  | 13     | U           | U           |              |
| ACRYLONITRILE             | 9      | U           | U           |              |
| BENZENE                   | 1.1    | U           | U           |              |
| BROMODICHLOROMETHANE      | 1.1    | U           | U           |              |
| BROMOFORM                 | 1.1    | U           | U           |              |
| BROMOMETHANE              | 2.1    | U           | U           |              |
| CARBON TETRACHLORIDE      | 1.5    | U           | Ų           |              |
| CHLOROBENZENE             | 1,1    | U           | U           |              |
| CHLORODIBROMOMETHANE      | 1.1    | U           | U           |              |
| CHLOROETHANE              | 3      | U           | U           |              |
| CHLOROFORM                | - 1.1  | U           | U           |              |
| CHLOROMETHANE             | 2.3    | U           | U           |              |
| CIS-1,2-DICHLOROETHENE    | 1.1    | U           | U           |              |
| CIS-1,3-DICHLOROPROPENE   | 1.1    | U           | U           |              |
| DICHLORODIFLUOROMETHANE   | 2.3    | U           | U           |              |
| ETHYLBENZENE              | 1.1    | U           | U           |              |
| METHYL TERT-BUTYL ETHER   | 1.1    | U           | U           |              |
| METHYLENE CHLORIDE        | 5.7    | U           | U           |              |
| TETRACHLOROETHENE         | 1.1    | U           | U           |              |
| TOLUENE                   | 1.1    | U           | U           |              |
| TOTAL XYLENES             | 2.4    | U           | U           |              |

TOTAL XYLENES

SDG: F57525 MEDIA: SOIL DATA FRACTION: OV

nsample

KWSM-SO-DRUM-4

samp\_date

5/14/2008

lab\_id

F57525-4

qc\_type

NM .

units

UG/KG

Pct\_Solids

87.3

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Quai<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 1.1    | C           | Ü           |              |
| TRANS-1,3-DICHLOROPROPENE | 1.1    | Ŭ           | U           |              |
| TRICHLOROETHENE           | 1.1    | U           | Ü           |              |
| TRICHLOROFLUOROMETHANE    | 1.8    | U           | Ū           |              |
| VINYL CHLORIDE            | 1.6    | U           | U           | -            |

SDG: F57525 MEDIA: SOIL DATA FRACTION: PAH

nsample

KWSM-SO-DRUM-2

nsample

KWSM-SO-DRUM-4

samp\_date

5/14/2008

samp\_date

5/14/2008

lab\_id qc\_type F57525-2 NM

lab\_id qc\_type F57525-4

units

UG/KG

Pct\_Solids

NM UG/KG

89.4

units Pct\_Solids

87.3

DUP\_OF:

| Parameter              | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|------------------------|--------|-------------|-------------|--------------|
| 1-METHYLNAPHTHALENE    | 44     | U           | U           |              |
| 2-METHYLNAPHTHALENE    | · 44   | U           | U           |              |
| ACENAPHTHENE           | 74     | U           | U           |              |
| ACENAPHTHYLENE         | 74     | U           | U           |              |
| ANTHRACENE             | 44     | U           | U           |              |
| BENZO(A)ANTHRACENE     | 15     | Ū           | U           |              |
| BENZO(A)PYRENE         | 15     | U           | U           |              |
| BENZO(B)FLUORANTHENE   | 24.8   | ı           | J           | Р            |
| BENZO(G,H,I)PERYLENE   | 16.6   | 1           | J           | Р            |
| BENZO(K)FLUORANTHENE   | 15     | U           | Ú           |              |
| CHRYSENE               | 15     | U           | U           |              |
| DIBENZO(A,H)ANTHRACENE | 15     | U           | U           |              |
| FLUORANTHENE           | 52     | U           | U           |              |
| FLUORENE               | 44     | U           | Ú           |              |
| INDENO(1,2,3-CD)PYRENE | 15     | U           | U           |              |
| NAPHTHALENE            | 44     | U           | U           |              |
| PHENANTHRENE           | 44     | U           | U           |              |
| PYRENE                 | 52     | U           | U           |              |
|                        |        |             |             |              |

| Parameter              | Result | Lab<br>Qual | Vai<br>Qual | Qual<br>Code |
|------------------------|--------|-------------|-------------|--------------|
| 1-METHYLNAPHTHALENE    | 46     | U           | U           |              |
| 2-METHYLNAPHTHALENE    | 46     | U           | U           |              |
| ACENAPHTHENE           | 77     | U           | U           |              |
| ACENAPHTHYLENE         | 77     | U           | U           |              |
| ANTHRACENE             | 46     | U           | U           |              |
| BENZO(A)ANTHRACENE     | 15     | U           | U           |              |
| BENZO(A)PYRENE         | 15     | U           | U           |              |
| BENZO(B)FLUORANTHENE   | 15     | U           | U           |              |
| BENZO(G,H,I)PERYLENE   | 15     | U           | U           |              |
| BENZO(K)FLUORANTHENE   | 15     | U           | U           |              |
| CHRYSENE               | 15     | U           | U           |              |
| DIBENZO(A,H)ANTHRACENE | 15     | U           | U           |              |
| FLUORANTHENE           | 54     | U           | U           |              |
| FLUORENE               | 46     | U           | U           |              |
| INDENO(1,2,3-CD)PYRENE | 15     | U           | U           |              |
| NAPHTHALENE            | 46     | U           | U           |              |
| PHENANTHRENE           | 46     | U           | U           |              |
| PYRENE                 | 54     | U           | U           |              |

00979

SDG: F57525 MEDIA: SOIL DATA FRACTION: PET

nsample

KWSM-SO-DRUM-2

nsample

KWSM-SO-DRUM-4

samp\_date

5/14/2008

samp\_date

5/14/2008

lab\_id

F57525-2

lab\_id

F57525-4

qc\_type units

NM MG/KG qc\_type

DUP\_OF:

NM

Pct\_Solids

89.4

units Pct\_Solids MG/KG

87.3

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 14.4   |             |             |              |

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 13.8   |             |             |              |

Parameter

SDG: F57525 MEDIA: WATER DATA FRACTION: OV

nsample

KWSM-BCTF-GW-DRUM-3

Lab

U

Result Qual

0.29

Val

U

Qual Code

samp\_date

1,1,1-TRICHLOROETHANE

5/14/2008

lab\_id qc\_type F57525-3

units

NM UG/L

Pct\_Solids DUP\_OF:

units Qual

nsample KWSM-BCTF-GW-DRUM-3 samp\_date 5/14/2008 lab\_id F57525-3 qc\_type NM UG/L

Pct\_Solids DUP\_OF:

nsample samp\_date lab\_id qc\_type units

KWSM-GW-DRUM-1 5/14/2008

F57525-1 NM

UG/L

Pct\_Solids DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | U           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | U           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | U           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | U           | U           |              |

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| 1,1,1-TRICHLOROETHANE     | 0.29   | U           | U           |              |
| 1,1,2,2-TETRACHLOROETHANE | 0.37   | U           | U           |              |
| 1,1,2-TRICHLOROETHANE     | 0.3    | U           | U           |              |
| 1,1-DICHLOROETHANE        | 0.25   | U           | U           |              |
| 1,1-DICHLOROETHENE        | 0.23   | U           | U           |              |
| 1,2-DICHLOROBENZENE       | 0.2    | U           | U           |              |
| 1,2-DICHLOROETHANE        | 0.2    | U           | U           |              |
| 1,2-DICHLOROPROPANE       | 0.25   | U           | U           |              |
| 1,3-DICHLOROBENZENE       | 0.23   | U           | U           |              |
| 1,4-DICHLOROBENZENE       | 0.22   | U           | U           |              |
| 2-CHLOROETHYL VINYL ETHER | 1.2    | U           | U           |              |
| ACROLEIN                  | 9      | U           | U           | *            |
| ACRYLONITRILE             | 2      | Ų           | U           |              |
| BENZENE                   | 1.3    |             |             | -            |
| BROMODICHLOROMETHANE      | 0.57   | T           | J           | Р            |
| BROMOFORM                 | 0.28   | U           | U           |              |
| BROMOMETHANE              | 0.54   | U           | Ü           |              |
| CARBON TETRACHLORIDE      | 0.29   | U           | U           | -            |
| CHLOROBENZENE             | 0.2    | U           | U           |              |
| CHLORODIBROMOMETHANE      | 0.2    | U           | U           |              |
| CHLOROETHANE              | 0.46   | U           | U           |              |
| CHLOROFORM                | 4.2    |             |             |              |
| CHLOROMETHANE             | 0.38   | U           | U           |              |
| CIS-1,2-DICHLOROETHENE    | 0.28   | U           | U           |              |
| CIS-1,3-DICHLOROPROPENE   | 0.24   | U           | U           |              |
| DICHLORODIFLUOROMETHANE   | 1      | U           | U           |              |
| ETHYLBENZENE              | 11.4   |             |             |              |
| METHYL TERT-BUTYL ETHER   | 6      | -           |             |              |
| METHYLENE CHLORIDE        | 1      | U           | U           |              |
| TETRACHLOROETHENE         | 0.25   | U           | U           |              |
| TOLUENE                   | 7.5    |             |             |              |
| TOTAL XYLENES             | 73.6   |             |             |              |

| 1111 THORIZONOZITIMA      | 0.20 | 0   | ļ U | İ |
|---------------------------|------|-----|-----|---|
| 1,1,2,2-TETRACHLOROETHANE | 0.37 | U   | U   |   |
| 1,1,2-TRICHLOROETHANE     | 0.3  | U   | U   |   |
| 1,1-DICHLOROETHANE        | 0.25 | U   | U   |   |
| 1,1-DICHLOROETHENE        | 0.23 | U   | U   |   |
| 1,2-DICHLOROBENZENE       | 0.2  | U   | U   |   |
| 1,2-DICHLOROETHANE        | 0.2  | U   | U   |   |
| 1,2-DICHLOROPROPANE       | 0.25 | U   | . U |   |
| 1,3-DICHLOROBENZENE       | 0.23 | U   | U   |   |
| 1,4-DICHLOROBENZENE       | 0.22 | U   | U   |   |
| 2-CHLOROETHYL VINYL ETHER | 1.2  | · Ü | U   |   |
| ACROLEIN                  | 9    | U   | U   | - |
| ACRYLONITRILE             | 2    | U   | · U |   |
| BENZENE                   | 0.2  | Ī   | J   | Р |
| BROMODICHLOROMETHANE      | 0.29 | U   | Ü   |   |
| BROMOFORM                 | 0.28 | U   | U   | - |
| BROMOMETHANE              | 0.54 | U   | U   |   |
| CARBON TETRACHLORIDE      | 0.29 | U   | U   |   |
| CHLOROBENZENE             | 0.2  | U   | U   |   |
| CHLORODIBROMOMETHANE      | 0.2  | U   | Ü   |   |
| CHLOROETHANE              | 0.46 | Ü   | U   |   |
| CHLOROFORM                | 0.21 | U   | U   | - |
| CHLOROMETHANE             | 0.38 | U   | U   |   |
| CIS-1,2-DICHLOROETHENE    | 0.28 | U   | U   |   |
| CIS-1,3-DICHLOROPROPENE   | 0.24 | U   | Ū   |   |
| DICHLORODIFLUOROMETHANE   | 1    | Û   | U   |   |
| ETHYLBENZENE              | 1.1  |     |     |   |
| METHYL TERT-BUTYL ETHER   | 0.25 | U   | U   |   |
| METHYLENE CHLORIDE        | 1    | U   | U   |   |
| TETRACHLOROETHENE         | 0.25 | Ū   | U   |   |
| TOLUENE                   | 0.27 | U   | U   |   |
| TOTAL XYLENES             | 21.7 |     | 1   |   |

SDG: F57525 MEDIA: WATER DATA FRACTION: OV

nsample

KWSM-GW-DRUM-1

samp\_date

5/14/2008

lab\_id

F57525-1

qc\_type

NM

units

UG/L

Pct\_Solids DUP\_OF:

| Parameter                 | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------------------|--------|-------------|-------------|--------------|
| TRANS-1,2-DICHLOROETHENE  | 0.2    | Ü           | U           |              |
| TRANS-1,3-DICHLOROPROPENE | 0.21   | Ų           | U           |              |
| TRICHLOROETHENE           | 0.38   | U           | Ü           |              |
| TRICHLOROFLUOROMETHANE    | 0.43   | U           | U           |              |
| VINYL CHLORIDE            | 0.34   | Ũ           | U           |              |

SDG: F57525 MEDIA: WATER DATA FRACTION: PAH

nsample

KWSM-BCTF-GW-DRUM-3

nsample

KWSM-GW-DRUM-1

samp\_date

5/14/2008

samp\_date

5/14/2008

lab\_id qc\_type F57525-3 NM lab\_id qc\_type F57525-1 NM

ÚG/L

units

UG/L

Pct\_Solids

Pct\_Solids

units

DUP\_OF:

| Result | Lab<br>Qual                                                                                                                       | Val<br>Qual                                                                                                                        | Qual<br>Code                                                                                                                                                                        |
|--------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5.2    |                                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                     |
| 3.5    |                                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                     |
| 0.48   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.48   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.48   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.048  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.095  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.048  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.095  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.095  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.095  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.048  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.24   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.24   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.048  | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 3.9    |                                                                                                                                   |                                                                                                                                    |                                                                                                                                                                                     |
| 0.48   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
| 0.24   | U                                                                                                                                 | U                                                                                                                                  |                                                                                                                                                                                     |
|        | 5.2<br>3.5<br>0.48<br>0.48<br>0.048<br>0.095<br>0.095<br>0.095<br>0.095<br>0.095<br>0.048<br>0.24<br>0.24<br>0.048<br>3.9<br>0.48 | Result Qual 5.2 3.5 0.48 U 0.48 U 0.048 U 0.095 U 0.095 U 0.095 U 0.095 U 0.095 U 0.095 U 0.048 U 0.24 U 0.24 U 0.048 U 3.9 0.48 U | Result Qual Qual 5.2 3.5 0.48 U U 0.48 U U 0.048 U U 0.095 U U 0.048 U U 0.095 U U 0.048 U U 0.24 U U 0.24 U U 0.24 U U 0.048 U U |

| Parameter              | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|------------------------|--------|-------------|-------------|--------------|
| 1-METHYLNAPHTHALENE    | 0.89   | 1           | 1           |              |
| 2-METHYLNAPHTHALENE    | 1.4    |             |             |              |
| ACENAPHTHENE           | 0.48   | U           | U           |              |
| ACENAPHTHYLENE         | 0.48   | U           | U           |              |
| ANTHRACENE             | 0.48   | U           | U           |              |
| BENZO(A)ANTHRACENE     | 0.048  | Ū           | U           |              |
| BENZO(A)PYRENE         | 0.096  | U           | U           |              |
| BENZO(B)FLUORANTHENE   | 0.048  | U           | U           |              |
| BENZO(G,H,I)PERYLENE   | 0.096  | U           | U           |              |
| BENZO(K)FLUORANTHENE   | 0.096  | U           | U           |              |
| CHRYSENE               | 0.096  | U           | Ü           |              |
| DIBENZO(A,H)ANTHRACENE | 0.048  | U           | U           |              |
| FLUORANTHENE           | 0.24   | U           | U           |              |
| FLUORENE               | 0.24   | Ū           | U           |              |
| INDENO(1,2,3-CD)PYRENE | 0.048  | U           | U           |              |
| NAPHTHALENE            | 2.3    |             |             |              |
| PHENANTHRENE           | 0.48   | U           | U           |              |
| PYRENE                 | 0.24   | U           | U           |              |
|                        |        |             |             |              |

PROJ\_NO:

00979 SDG: F57525 MEDIA: WATER DATA FRACTION: PET

nsample

KWSM-BCTF-GW-DRUM-3

nsample

KWSM-GW-DRUM-1

samp\_date

5/14/2008

samp\_date

5/14/2008

lab\_id

F57525-3

lab\_id

F57525-1

qc\_type units

NM MG/L qc\_type

NM

Pct\_Solids

units

MG/L

Pct\_Solids

DUP\_OF:

DUP\_OF:

| Parameter     | Result | Lab<br>Qual | Val<br>Qual |  |
|---------------|--------|-------------|-------------|--|
| TPH (C08-C40) | 0.82   |             |             |  |

| Parameter     | Result | Lab<br>Qual | Val<br>Qual | Qual<br>Code |
|---------------|--------|-------------|-------------|--------------|
| TPH (C08-C40) | 0.389  |             |             |              |

PROJ\_NO: 00979

SDG: F57525 MEDIA: SOIL DATA FRACTION: MISC

nsample

KWSM-SO-DRUM-2

nsample

KWSM-SO-DRUM-4

samp\_date

5/14/2008

samp\_date

5/14/2008

lab\_id

F57525-2

NM

lab\_id

F57525-4

qc\_type

qc\_type

NM

Pct\_Solids DUP\_OF:

Pct\_Solids DUP\_OF:

| Parameter      | units | Result | Val<br>Qual | Qual<br>Code |
|----------------|-------|--------|-------------|--------------|
| PERCENT SOLIDS | %     | 89.4   |             | ·            |

| Parameter      | units | Result | Val<br>Qual | Qual<br>Code |
|----------------|-------|--------|-------------|--------------|
| PERCENT SOLIDS | %     | 87.3   |             |              |

# APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

n/a

Client Sample ID: KWSM-BCTF-GW-DRUM-3

Lab Sample ID:

F57525-3

Matrix: Method: AQ - Ground Water

SW846 8260B

05/28/08

JG

05/14/08 Date Sampled: Date Received:

05/15/08 Percent Solids: n/a

Project: Sigsbee Marina; NAS Key West, FL

File ID DF Analyzed Ву

1

Analytical Batch Prep Date Prep Batch

VJ2475

n/a

Run #1 Run #2

Purge Volume

J038631.D

Run #1 5.0 ml

Run #2

VOA PPL List + MTBE

| CAS No.        | Compound                   | Result | RL  | MDL  | Units | Q |
|----------------|----------------------------|--------|-----|------|-------|---|
| 107-02-8       | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |   |
| 107-13-1       | Acrylonitrile              | 2.0 U  | 10  | 2.0  | ug/l  |   |
| 71-43-2        | Benzene                    | 0.20   | 1.0 | 0.20 | ug/l  | I |
| 75-27-4        | Bromodichloromethane       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-25-2        | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 108-90-7       | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-00-3        | Chloroethane               | 0.46 U | 2.0 | 0.46 | ug/l  |   |
| 67-66-3        | Chloroform                 | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 110-75-8       | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |   |
| 56-23-5        | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-34-3        | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 75-35-4        | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 107-06-2       | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 78-87-5        | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 124-48-1       | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-71-8        | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |   |
| 156-59-2       | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 10061-01-5     | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |   |
| 541-73-1       | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 95-50-1        | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 106-46-7       | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |   |
| 156-60-5       | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 10061-02-6     | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 100-41-4       | Ethylbenzene               | 1.1    | 1.0 | 0.20 | ug/l  |   |
| 74-83-9        | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |   |
| 74-87-3        | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |   |
| <b>75-09-2</b> | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |   |
| 1634-04-4      | Methyl Tert Butyl Ether    | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 71-55-6        | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 79-34-5        | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |   |
| 79-00-5        | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |   |
| 127-18-4       | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



Page 2 of 2

Client Sample ID: KWSM-BCTF-GW-DRUM-3

Lab Sample ID:

F57525-3

AQ - Ground Water

Date Sampled: 05/14/08

Matrix: Method:

SW846 8260B

Date Received: 05/15/08

Project:

Sigsbee Marina; NAS Key West, FL

Percent Solids: n/a

VOA PPL List + MTBE

| CAS No.    | Compound               | Result | RL     | MDL  | Units | Q |
|------------|------------------------|--------|--------|------|-------|---|
| 108-88-3   | Toluene                | 0.27 U | 1.0    | 0.27 | ug/l  |   |
| 79-01-6    | Trichloroethylene      | 0.38 U | 1.0    | 0.38 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane | 0.43 U | 2.0    | 0.43 | ug/l  |   |
| 75-01-4    | Vinyl chloride         | 0.34 U | 1.0    | 0.34 | ug/l  |   |
| 1330-20-7  | Xylene (total)         | 21.7   | 3.0    | 0.56 | ug/l  |   |
| CAS No.    | Surrogate Recoveries   | Run# 1 | Run# 2 | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane   | 95%    |        | 87-1 | 16%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4  | 99%    |        | 76-1 | 27%   |   |
| 2037-26-5  | Toluene-D8             | 110%   |        | 86-1 | 12%   |   |
| 460-00-4   | 4-Bromofluorobenzene   | 109%   |        | 84-1 | 20%   |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



Ву

JĠ

Page 1 of 2

Client Sample ID: KWSM-GW-DRUM-1

Lab Sample ID:

F57525-1

Matrix: Method: AO - Ground Water

DF

1

SW846 8260B

Date Sampled:

05/14/08

Date Received: Percent Solids:

05/15/08 n/a

Project:

Sigsbee Marina; NAS Key West, FL

Analyzed

05/28/08

Prep Date n/a

Prep Batch n/a

Analytical Batch VJ2475

Run #1 Run #2

Purge Volume

Run #1 Run #2 5.0 ml

File ID

J038630.D

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units | Q |
|------------|----------------------------|--------|-----|------|-------|---|
| 107-02-8   | Acrolein                   | 9.0 U  | 20  | 9.0  | ug/l  |   |
| 107-13-1   | Acrylonitrile              | 2.0 U  | 10  | 2.0  | ug/l  |   |
| 71-43-2    | Benzene                    | 1.3    | 1.0 | 0.20 | ug/l  |   |
| 75-27-4    | Bromodichloromethane       | 0.57   | 1.0 | 0.29 | ug/l  | I |
| 75-25-2    | Bromoform                  | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 108-90-7   | Chlorobenzene              | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-00-3    | Chloroethane               | 0.46 U | 2.0 | 0.46 | ug/l  |   |
| 67-66-3    | Chloroform                 | 4.2    | 1.0 | 0.21 | ug/l  |   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 1.2 U  | 5.0 | 1.2  | ug/l  |   |
| 56-23-5    | Carbon tetrachloride       | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 75-34-3    | 1,1-Dichloroethane         | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 75-35-4    | 1,1-Dichloroethylene       | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 107-06-2   | 1,2-Dichloroethane         | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 78-87-5    | 1,2-Dichloropropane        | 0.25 U | 1.0 | 0.25 | ug/l  |   |
| 124-48-1   | Dibromochloromethane       | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 75-71-8    | Dichlorodifluoromethane    | 1.0 U  | 2.0 | 1.0  | ug/l  |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.28 U | 1.0 | 0.28 | ug/l  |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.24 U | 1.0 | 0.24 | ug/l  |   |
| 541-73-1   | m-Dichlorobenzene          | 0.23 U | 1.0 | 0.23 | ug/l  |   |
| 95-50-1    | o-Dichlorobenzene          | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 106-46-7   | p-Dichlorobenzene          | 0.22 U | 1.0 | 0.22 | ug/l  |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.20 U | 1.0 | 0.20 | ug/l  |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.21 U | 1.0 | 0.21 | ug/l  |   |
| 100-41-4   | Ethylbenzene               | 11.4   | 1.0 | 0.20 | ug/l  |   |
| 74-83-9    | Methyl bromide             | 0.54 U | 2.0 | 0.54 | ug/l  |   |
| 74-87-3    | Methyl chloride            | 0.38 U | 2.0 | 0.38 | ug/l  |   |
| 75-09-2    | Methylene chloride         | 1.0 U  | 5.0 | 1.0  | ug/l  |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 6.0    | 1.0 | 0.25 | ug/l  |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.29 U | 1.0 | 0.29 | ug/l  |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 0.37 U | 1.0 | 0.37 | ug/l  |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.30 U | 1.0 | 0.30 | ug/l  |   |
| 127-18-4   | Tetrachloroethylene        | 0.25 U | 1.0 | 0.25 | ug/l  |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



Client Sample ID: KWSM-GW-DRUM-1

Lab Sample ID:

F57525-1

Matrix:

AQ - Ground Water

Method: Project:

SW846 8260B Sigsbee Marina; NAS Key West, FL Date Sampled: 05/14/08 Date Received: 05/15/08

Percent Solids: n/a

#### VOA PPL List + MTBE

| CAS No.    | Compound               | Result | RL     | MDL  | Units | Q |
|------------|------------------------|--------|--------|------|-------|---|
| 108-88-3   | Toluene                | 7.5    | ુે 1.0 | 0.27 | ug/l  |   |
| 79-01-6    | Trichloroethylene      | 0.38 U | 1.0    | 0.38 | ug/l  |   |
| 75-69-4    | Trichlorofluoromethane | 0.43 U | 2.0    | 0.43 | ug/l  |   |
| 75-01-4    | Vinyl chloride         | 0.34 U | 1.0    | 0.34 | ug/l  |   |
| 1330-20-7  | Xylene (total)         | 73.6   | 3.0    | 0.56 | ug/l  |   |
| CAS No.    | Surrogate Recoveries   | Run# 1 | Run# 2 | Lim  | its   |   |
| 1868-53-7  | Dibromofluoromethane   | 100%   |        | 87-1 | 16%   |   |
| 17060-07-0 | 1,2-Dichloroethane-D4  | 101%   |        | 76-1 | .27%  |   |
| 2037-26-5  | Toluene-D8             | 105%   |        | 86-1 | .12%  |   |
| 460-00-4   | 4-Bromofluorobenzene   | 102%   | :<br>경 | 84-1 | .20%  |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



## Report of Analysis

Page 1 of 2

Client Sample ID: KWSM-SO-DRUM-2

Lab Sample ID:

F57525-2

Matrix: Method: SO - Soil

SW846 8260B

DF

1

Date Sampled: Date Received:

05/14/08

05/15/08

Ву

SH

Percent Solids: 89.4

Project:

Sigsbee Marina; NAS Key West, FL

Analyzed

05/19/08

Prep Date n/a

Prep Batch n/a

**Analytical Batch** VG1912

Run #1 Run #2

Initial Weight

G0050465.D

File ID

Run #1 5.99 g

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL  | MDL  | Units | Q |
|------------|----------------------------|--------|-----|------|-------|---|
| 107-02-8   | Acrolein                   | 10 U   | 23  | 10   | ug/kg |   |
| 107-13-1   | Acrylonitrile              | 7.4 U  | 23  | 7.4  | ug/kg |   |
| 71-43-2    | Benzene                    | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 75-27-4    | Bromodichloromethane       | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 75-25-2    | Bromoform                  | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 108-90-7   | Chlorobenzene              | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 75-00-3    | Chloroethane               | 2.4 U  | 4.7 | 2.4  | ug/kg |   |
| 67-66-3    | Chloroform                 | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 4.7 U  | 23  | 4.7  | ug/kg |   |
| 56-23-5    | Carbon tetrachloride       | 1.2 U  | 4.7 | 1.2  | ug/kg |   |
| 75-34-3    | 1,1-Dichloroethane         | 1.0 U  | 4.7 | 1.0  | ug/kg |   |
| 75-35-4    | 1,1-Dichloroethylene       | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 107-06-2   | 1,2-Dichloroethane         | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 78-87-5    | 1,2-Dichloropropane        | 1.2 U  | 4.7 | 1.2  | ug/kg |   |
| 124-48-1   | Dibromochloromethane       | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 75-71-8    | Dichlorodifluoromethane    | 1.9 U  | 4.7 | 1.9  | ug/kg |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 541-73-1   | m-Dichlorobenzene          | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 95-50-1    | o-Dichlorobenzene          | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 106-46-7   | p-Dichlorobenzene          | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 100-41-4   | Ethylbenzene               | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 74-83-9    | Methyl bromide             | 1.7 U  | 4.7 | 1.7  | ug/kg |   |
| 74-87-3    | Methyl chloride            | 1.9 U  | 4.7 | 1.9  | ug/kg |   |
| 75-09-2    | Methylene chloride         | 4.7 U  | 9.3 | 4.7  | ug/kg |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 1.2 U  | 4.7 | 1.2  | ug/kg |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 0.93 U | 4.7 | 0.93 | ug/kg |   |
| 127-18-4   | Tetrachloroethylene        | 0.93 U | 4.7 | 0.93 | ug/kg |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < RL \ J = Estimated value$ 

V = Indicates analyte found in associated method blank



Page 2 of 2

Client Sample ID: KWSM-SO-DRUM-2

Lab Sample ID:

F57525-2

SO - Soil

Date Sampled: 05/14/08

Matrix: Method:

SW846 8260B

Date Received:

05/15/08

Project:

Sigsbee Marina; NAS Key West, FL

Percent Solids: 89.4

#### VOA PPL List + MTBE

| CAS No.                                                | Compound                                                                                   | Result                                      | RL                             | MDL                               | Units                                     | Q |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|-----------------------------------|-------------------------------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4<br>75-01-4<br>1330-20-7 | Toluene<br>Trichloroethylene<br>Trichlorofluoromethane<br>Vinyl chloride<br>Xylene (total) | 0.93 U<br>0.93 U<br>1.5 U<br>1.3 U<br>2.0 U | 4.7<br>4.7<br>4.7<br>4.7<br>14 | 0.93<br>0.93<br>1.5<br>1.3<br>2.0 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg |   |
| CAS No.                                                | Surrogate Recoveries                                                                       | Run# 1                                      | Run# 2                         | Limi                              | its                                       |   |
| 1868-53-7<br>2037-26-5<br>460-00-4<br>17060-07-0       | Dibromofluoromethane<br>Toluene-D8<br>4-Bromofluorobenzene<br>1,2-Dichloroethane-D4        | 96%<br>98%<br>101%<br>96%                   |                                | 80-1<br>71-1<br>59-1<br>77-1      | 30%<br>48%                                |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





# Report of Analysis

By

SH

Page 1 of 2

Client Sample ID: KWSM-SO-DRUM-4

Lab Sample ID:

F57525-4

SO - Soil

Matrix: Method:

SW846 8260B

DF

1

Date Sampled: 05/14/08 Date Received: 05/15/08

Prep Date

n/a

Percent Solids: 87.3

Project:

Sigsbee Marina; NAS Key West, FL

Analyzed

05/19/08

Analytical Batch Prep Batch VG1912 n/a

Run #1 Run #2

Initial Weight

G0050466.D

File ID

Run #1 5.00 g

Run #2

VOA PPL List + MTBE

| CAS No.    | Compound                   | Result | RL   | MDL | Units | Q |
|------------|----------------------------|--------|------|-----|-------|---|
| 107-02-8   | Acrolein                   | 13 U   | 29   | 13  | ug/kg |   |
| 107-13-1   | Acrylonitrile              | 9.0 U  | 29   | 9.0 | ug/kg |   |
| 71-43-2    | Benzene                    | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 75-27-4    | Bromodichloromethane       | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 75-25-2    | Bromoform                  | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 108-90-7   | Chlorobenzene              | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 75-00-3    | Chloroethane               | 3.0 U  | 5.7  | 3.0 | ug/kg |   |
| 67-66-3    | Chloroform                 | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 5.7 U  | 29   | 5.7 | ug/kg |   |
| 56-23-5    | Carbon tetrachloride       | 1.5 U  | 5.7  | 1.5 | ug/kg |   |
| 75-34-3    | 1,1-Dichloroethane         | 1.3 U  | 5.7  | 1.3 | ug/kg |   |
| 75-35-4    | 1,1-Dichloroethylene       | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 107-06-2   | 1,2-Dichloroethane         | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 78-87-5    | 1,2-Dichloropropane        | 1.5 U  | 5.7  | 1.5 | ug/kg |   |
| 124-48-1   | Dibromochloromethane       | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 75-71-8    | Dichlorodifluoromethane    | 2.3 U  | 5.7  | 2.3 | ug/kg |   |
| 156-59-2   | cis-1,2-Dichloroethylene   | 1:1 U  | 5.7  | 1.1 | ug/kg |   |
| 10061-01-5 | cis-1,3-Dichloropropene    | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 541-73-1   | m-Dichlorobenzene          | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 95-50-1    | o-Dichlorobenzene          | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 106-46-7   | p-Dichlorobenzene          | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 156-60-5   | trans-1,2-Dichloroethylene | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 10061-02-6 | trans-1,3-Dichloropropene  | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 100-41-4   | Ethylbenzene               | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 74-83-9    | Methyl bromide             | 2.1 U  | 5.7  | 2.1 | ug/kg |   |
| 74-87-3    | Methyl chloride            | 2.3 U  | 5.7  | 2.3 | ug/kg |   |
| 75-09-2    | Methylene chloride         | 5.7 U  | . 11 | 5.7 | ug/kg |   |
| 1634-04-4  | Methyl Tert Butyl Ether    | 1.1 U  | 5.7  | 1.1 | ug/kg |   |
| 71-55-6    | 1,1,1-Trichloroethane      | 1,1,U  | 5.7  | 1.1 | ug/kg |   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 1.5 U  | 5.7  | 1.5 | ug/kg |   |
| 79-00-5    | 1,1,2-Trichloroethane      | 1,1 U  | 5.7  | 1.1 | ug/kg |   |
| 127-18-4   | Tetrachloroethylene        | 1.1 U  | 5.7  | 1.1 | ug/kg |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank



Client Sample ID: KWSM-SO-DRUM-4

Lab Sample ID:

F57525-4

SO - Soil

Matrix: Method: Project:

SW846 8260B

Sigsbee Marina; NAS Key West, FL

Date Sampled:

05/14/08

Date Received: 05/15/08

Percent Solids: 87.3

#### VOA PPL List + MTBE

| CAS No.                                                | Compound                                                                            | Result                                    | RL                              | MDL                             | Units                                     | Q |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------|---------------------------------|-------------------------------------------|---|
| 108-88-3<br>79-01-6<br>75-69-4<br>75-01-4<br>1330-20-7 | Toluene Trichloroethylene Trichlorofluoromethane Vinyl chloride Xylene (total)      | 1.1 U<br>1.1 U<br>1.8 U<br>1.6 U<br>2.4 U | 5.7<br>5.7<br>5.7<br>5.7<br>5.7 | 1.1<br>1.1<br>1.8<br>1.6<br>2.4 | ug/kg<br>ug/kg<br>ug/kg<br>ug/kg<br>ug/kg |   |
| CAS No.                                                | Surrogate Recoveries                                                                | Run# 1                                    | Run# 2                          | Limits                          |                                           |   |
| 1868-53-7<br>2037-26-5<br>460-00-4<br>17060-07-0       | Dibromofluoromethane<br>Toluene-D8<br>4-Bromofluorobenzene<br>1,2-Dichloroethane-D4 | 102%<br>97%<br>97%<br>99%                 |                                 | 71-1<br>59-1                    | 21%<br>30%<br>48%<br>23%                  |   |



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





# Report of Analysis

Page 1 of 1

Client Sample ID: KWSM-BCTF-GW-DRUM-3

Lab Sample ID:

F57525-3

AQ - Ground Water

Date Sampled:

05/14/08

Matrix:

SW846 8270C BY SIM SW846 3510C

Date Received:

05/15/08

Method: Project:

Sigsbee Marina; NAS Key West, FL

Percent Solids: n/a

Analytical Batch

Run #2

Run #1 W040641.D

File ID

DF Analyzed 1 05/20/08

Ву RB

Prep Date 05/19/08

Prep Batch OP25106

SW2081

Initial Volume

1050 ml

Final Volume

Run #1 Run #2 1.0 ml

BN PAH Liet

| DIA | 1 VIII | TISE |  |
|-----|--------|------|--|
|     |        |      |  |

| CAS No.   | Compound               | Result  | RL     | MDL   | Units | Q |
|-----------|------------------------|---------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U  | 0.95   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U  | 0.95   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U  | 0.95   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.095 U | 0.19   | 0.095 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.095 U | 0.19   | 0.095 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.095 U | 0.19   | 0.095 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.095 U | 0.19   | 0.095 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U  | 0.95   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U  | 0.95   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 5.2     | 0.95   | 0.24  | ug/l  |   |
| 91-57-6   | 2-Methylnaphthalene    | 3.5     | 0.95   | 0.24  | ug/l  |   |
| 91-20-3   | Naphthalene            | 3.9     | 0.95   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U  | 0.95   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U  | 0.95   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1  | Run# 2 | Limi  | ts    |   |
| 4165-60-0 | Nitrobenzene-d5        | 64%     | i      | 42-10 | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 64%     |        | 40-10 | )6%   |   |
| 1718-51-0 | Terphenyl-d14          | 71%     |        | 39-12 | 21%   |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank



## Report of Analysis

Ву

RB

Page 1 of 1

Client Sample ID: KWSM-GW-DRUM-1

Lab Sample ID:

F57525-1

Matrix: Method: AQ - Ground Water

DF

1

SW846 8270C BY SIM SW846 3510C

Analyzed

05/20/08

Date Sampled:

05/14/08

Date Received: 05/15/08

Percent Solids: n/a

Project:

Sigsbee Marina; NAS Key West, FL

Prep Date

05/19/08

Prep Batch OP25106

Analytical Batch SW2081

Run #1 Run #2

Initial Volume

W040640.D

File ID

Final Volume

Run #1 1040 ml

1.0 ml

Run #2

#### **BN PAH List**

| CAS No.   | Compound               | Result                                       | RL     | MDL   | Units | Q |
|-----------|------------------------|----------------------------------------------|--------|-------|-------|---|
| 83-32-9   | Acenaphthene           | 0.48 U                                       | 0.96   | 0.48  | ug/l  |   |
| 208-96-8  | Acenaphthylene         | 0.48 U                                       | 0.96   | 0.48  | ug/l  |   |
| 120-12-7  | Anthracene             | 0.48 U                                       | 0.96   | 0.48  | ug/l  |   |
| 56-55-3   | Benzo(a)anthracene     | 0.048 U                                      | 0.19   | 0.048 | ug/l  |   |
| 50-32-8   | Benzo(a)pyrene         | 0.096 U                                      | 0.19   | 0.096 | ug/l  |   |
| 205-99-2  | Benzo(b)fluoranthene   | 0.048 U                                      | 0.19   | 0.048 | ug/l  |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.096 U                                      | 0.19   | 0.096 | ug/l  |   |
| 207-08-9  | Benzo(k)fluoranthene   | 0.096 U                                      | 0.19   | 0.096 | ug/l  |   |
| 218-01-9  | Chrysene               | 0.096 U                                      | 0.19   | 0.096 | ug/l  |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.048 U                                      | 0.19   | 0.048 | ug/l  |   |
| 206-44-0  | Fluoranthene           | 0.24 U                                       | 0.96   | 0.24  | ug/l  |   |
| 86-73-7   | Fluorene               | 0.24 U                                       | 0.96   | 0.24  | ug/l  |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.048 U                                      | 0.19   | 0.048 | ug/l  |   |
| 90-12-0   | 1-Methylnaphthalene    | 0.89                                         | 0.96   | 0.24  | ug/l  | I |
| 91-57-6   | 2-Methylnaphthalene    | 1.4                                          | 0.96   | 0.24  | ug/l  | • |
| 91-20-3   | Naphthalene            | 2.3                                          | 0.96   | 0.24  | ug/l  |   |
| 85-01-8   | Phenanthrene           | 0.48 U                                       | 0.96   | 0.48  | ug/l  |   |
| 129-00-0  | Pyrene                 | 0.24 U                                       | 0.96   | 0.24  | ug/l  |   |
| CAS No.   | Surrogate Recoveries   | Run# 1                                       | Run# 2 | Lim   | •     |   |
| 4165-60-0 | Nitrobenzene-d5        | 54%                                          |        | 42-1  | 08%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 46%                                          |        | 40-1  |       |   |
| 1718-51-0 | Terphenyl-d14          | 60%                                          |        | 39-1  |       |   |
|           | - ' '                  | race, 40 0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 |        |       | ,_    |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL \ but < RL \ J = Estimated \ value$ 

V = Indicates analyte found in associated method blank





Page 1 of 1

Client Sample ID: KWSM-SO-DRUM-2

Lab Sample ID:

F57525-2

Date Sampled:

05/14/08

Matrix:

SO - Soil

Date Received: 05/15/08

Method:

SW846 8270C BY SIM SW846 3550B

Percent Solids: 89.4

Project:

Sigsbee Marina; NAS Key West, FL

Prep Batch

**Analytical Batch** 

Run #1

File ID R13873.D Analyzed 05/23/08

By RB Prep Date  $05/\bar{2}2/08$ 

OP25149

SR643

Run #2

Initial Weight

30.3 g

Final Volume

DF

4

Run #1

Run #2

 $1.0 \, ml$ 

#### **BN PAH List**

| CAS No.   | Compound               | Result | RL      | MDL  | Units | Q |
|-----------|------------------------|--------|---------|------|-------|---|
| 83-32-9   | Acenaphthene           | 74 U   | 300     | 74   | ug/kg |   |
| 208-96-8  | Acenaphthylene         | 74 U   | 300     | 74   | ug/kg |   |
| 120-12-7  | Anthracene             | 44 U   | 300     | 44   | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene     | 15 U   | 59      | 15   | ug/kg |   |
| 50-32-8   | Benzo(a)pyrene         | 15 Ü   | 59      | 15   | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene   | 24.8   | 59      | 15   | ug/kg | I |
| 191-24-2  | Benzo(g,h,i)perylene   | 16.6   | 59      | 15   | ug/kg | I |
| 207-08-9  | Benzo(k)fluoranthene   | 15 U   | 59      | 15   | ug/kg |   |
| 218-01-9  | Chrysene               | 15 U   | 59      | 15   | ug/kg |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 15 U   | 59      | 15   | ug/kg |   |
| 206-44-0  | Fluoranthene           | 52 U   | 300     | 52   | ug/kg |   |
| 86-73-7   | Fluorene               | 44 U   | 300     | 44   | ug/kg |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 15 U   | 59      | 15   | ug/kg |   |
| 90-12-0   | 1-Methylnaphthalene    | 44 U   | 300     | 44   | ug/kg |   |
| 91-57-6   | 2-Methylnaphthalene    | 44 U   | 300     | 44   | ug/kg |   |
| 91-20-3   | Naphthalene            | 44 U   | 300     | 44   | ug/kg |   |
| 85-01-8   | Phenanthrene           | 44 U   | 300     | 44   | ug/kg |   |
| 129-00-0  | Pyrene                 | 52 U   | 300     | 52   | ug/kg |   |
| CAS No.   | Surrogate Recoveries   | Run# 1 | Run# 2  | Lim  | its   |   |
| 4165-60-0 | Nitrobenzene-d5        | 67%    |         | 40-1 | 05%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 71%    | \$      | 43-1 | .07%  |   |
| 1718-51-0 | Terphenyl-d14          | 89%    | 4<br>'= | 45-1 | 19%   |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



# Report of Analysis

Ву

RB

Page 1 of 1

Client Sample ID: KWSM-SO-DRUM-4

Lab Sample ID:

F57525-4

Date Sampled:

05/14/08

Matrix:

File ID

R13889.D

SO - Soil

Analyzed

05/26/08

Date Received: 05/15/08

Method:

SW846 8270C BY SIM SW846 3550B

Percent Solids: 87.3

Prep Date

05/22/08

Project:

Sigsbee Marina; NAS Key West, FL

Prep Batch OP25149

Analytical Batch SR644

Run #1 Run #2

Initial Weight

Final Volume

Run #1 29.7 g

Run #2

1.0 ml

DF

4

#### **BN PAH List**

| CAS No.   | Compound               | Result | RL     | MDL       | Units | Q |
|-----------|------------------------|--------|--------|-----------|-------|---|
| 83-32-9   | Acenaphthene           | 77 U   | 310    | 77        | ug/kg |   |
| 208-96-8  | Acenaphthylene         | 77 U   | 310    | 77        | ug/kg |   |
| 120-12-7  | Anthracene             | 46 U   | 310    | 46        | ug/kg |   |
| 56-55-3   | Benzo(a)anthracene     | 15 U   | 62     | 15        | ug/kg |   |
| 50-32-8   | Benzo(a)pyrene         | 15 U   | 62     | 15        | ug/kg |   |
| 205-99-2  | Benzo(b)fluoranthene   | 15 U   | 62     | 15        | ug/kg |   |
| 191-24-2  | Benzo(g,h,i)perylene   | 15 U   | 62     | 15        | ug/kg |   |
| 207-08-9  | Benzo(k)fluoranthene   | 15 U   | 62     | 15        | ug/kg |   |
| 218-01-9  | Chrysene               | 15 U   | 62     | 15        | ug/kg |   |
| 53-70-3   | Dibenzo(a,h)anthracene | 15 U   | 62     | 15        | ug/kg |   |
| 206-44-0  | Fluoranthene           | 54 U   | 310    | <b>54</b> | ug/kg |   |
| 86-73-7   | Fluorene               | 46 U   | 310    | 46        | ug/kg |   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 15 U   | 62     | 15        | ug/kg |   |
| 90-12-0   | 1-Methylnaphthalene    | 46.U   | 310    | 46        | ug/kg |   |
| 91-57-6   | 2-Methylnaphthalene    | 46 Ü   | 310    | 46        | ug/kg |   |
| 91-20-3   | Naphthalene            | 46 U   | 310    | 46        | ug/kg |   |
| 85-01-8   | Phenanthrene           | 46 U   | 310    | 46        | ug/kg |   |
| 129-00-0  | Pyrene                 | 54 U   | 310    | 54        | ug/kg |   |
| CAS No.   | Surrogate Recoveries   | Run# 1 | Run# 2 | Lim       | its   |   |
| 4165-60-0 | Nitrobenzene-d5        | 81%    |        | 40-1      | 05%   |   |
| 321-60-8  | 2-Fluorobiphenyl       | 83%    | 1/3    | 43-1      | 07%   |   |
| 1718-51-0 | Terphenyl-d14          | 84%    |        | 45-1      | 19%   |   |

U = Not detected

MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



Page 1 of 1

Client Sample ID: KWSM-BCTF-GW-DRUM-3

Lab Sample ID:

F57525-3

Matrix:

Method: Project:

AQ - Ground Water

FLORIDA-PRO SW846 3510C

DF

1

Sigsbee Marina; NAS Key West, FL

Date Sampled: 05/14/08

Date Received: 05/15/08

Percent Solids: n/a

Prep Date Prep Batch Analytical Batch

OP25103 GIJ1781

Run #1 Run #2

Final Volume

Initial Volume 1050 ml

File ID

IJ47396.D

Run #1 Run #2 1.0 ml

CAS No.

Compound

TPH (C8-C40)

Surrogate Recoveries

Result

Analyzed

05/20/08

RL

0.24

By

JB

MDL

0.16

05/19/08

Units

Q

mg/l

0.820 Run#1

Run#2

Limits

84-15-1

CAS No.

o-Terphenyl

102%

38-122%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank



## Report of Analysis

Page 1 of 1

Client Sample ID: KWSM-GW-DRUM-1

Lab Sample ID:

F57525-1

Matrix:

Method:

Project:

AQ - Ground Water

DF

1

FLORIDA-PRO SW846 3510C

File ID

IJ47393.D

Sigsbee Marina; NAS Key West, FL

Date Sampled:

05/14/08 Date Received: 05/15/08

Percent Solids: n/a

Prep Batch Analytical Batch OP25103 GIJ1781

Run #1 Run #2

Initial Volume

1050 ml

Final Volume

1.0 ml

Run #1 Run #2 CAS No.

Compound

Result

Analyzed

05/20/08

RL

By

JΒ

MDL

Prep Date

05/19/08

Units

Q

TPH (C8-C40)

0.389

0.24

0.16

mg/l

CAS No.

Surrogate Recoveries

Run# 1

Run#2

Limits

84-15-1

o-Terphenyl

104%

38-122%



L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank



# Report of Analysis

Page 1 of 1

Client Sample ID:

KWSM-SO-DRUM-2

DF

1

Lab Sample ID:

F57525-2

Matrix:

Method:

SO - Soil

FLORIDA-PRO SW846 3550B

Date Sampled: Date Received:

05/14/08 05/15/08

Percent Solids:

89.4

Project:

Sigsbee Marina; NAS Key West, FL

Analyzed By 05/21/08 JB

Prep Date 05/16/08

Prep Batch OP25098

Analytical Batch GIJ1782

Run #1 Run #2

Initial Weight

30.2 g

File ID

IJ47409.D

Final Volume 1.0 ml

Run #1 Run #2

CAS No.

Compound

Result

RL

MDL

6.3

Units

Q

14.4 9.3

mg/kg

CAS No.

Surrogate Recoveries

Run#1

Run#2

Limits

84-15-1

o-Terphenyl

TPH (C8-C40)

85%

47-111%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

 $I = Result > = MDL but < RL \quad J = Estimated value$ 

V = Indicates analyte found in associated method blank

 $N \, = \, Indicates \; presumptive \; evidence \; of \; a \; compound \;$ 



# Report of Analysis

Page 1 of 1

Client Sample ID: KWSM-SO-DRUM-4

DF

1

Lab Sample ID:

F57525-4

Matrix:

Method: Project:

SO - Soil

FLORIDA-PRO SW846 3550B

IJ47410.D

File ID

Sigsbee Marina; NAS Key West, FL

Date Sampled:

Prep Date

05/16/08

05/14/08 Date Received: 05/15/08

Prep Batch

87.3

Percent Solids:

Analytical Batch

OP25098 GIJ1782

Run #1 Run #2

Run #1

Initial Weight

30.0 g

Final Volume 1.0 ml

Run #2 CAS No.

Compound

TPH (C8-C40)

Result

Analyzed

05/21/08

RL

Ву

JB

MDL

6.5

Units

Q

mg/kg

CAS No.

Surrogate Recoveries

Run#1

13.8 9.5

Run# 2

Limits

84-15-1

o-Terphenyl

80%

47-111%



MDL - Method Detection Limit

RL = Reporting Limit = PQL

L = Indicates value exceeds calibration range

I = Result > = MDL but < RL J = Estimated value

V = Indicates analyte found in associated method blank





# APPENDIX C

SUPPORT DOCUMENTATION

#### SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Tetra Tech NUS Job No:

F57525

Site:

Sigsbee Marina; NAS Key West, FL

Report Date: 5/30/2008 5:19:07 PM

4 Samples were collected on 05/14/2008 and were received at Accutest on 05/15/2008 properly preserved, at 2 Deg. C and intact. These Samples received an Accutest job number of F57525. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

#### Volatiles by GCMS by Method SW846 8260B

Matrix: AQ

Batch ID: VJ2475

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F57610-7MS, F57610-7MSD were used as the QC samples indicated.

Matrix Spike Recoverys for 2-Chloroethyl vinyl ether, Trichloroethylene are outside control limits. Probable cause: due to matrix interference.

Matrix Spike Duplicate Recovery for 2-Chloroethyl vinyl ether is outside control limits. Probable cause: due to matrix interference.

Matrix: SO

Batch ID: VG1912

Samples F57493-14MS, F57493-14MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Blank Spike Recovery for 2-Chloroethyl vinyl ether is outside control limits.

All samples were analyzed within the recommended method holding time.

Matrix Spike Recoverys for Acrolein, Bromoform are outside control limits. Probable cause: due to matrix interference.

Matrix Spike Duplicate Recoverys for Acrolein, Bromoform, trans-1,3-Dichloropropene are outside control limits. Probable cause: due to matrix interference.

RPD for MSD for Acrolein is outside control limits for sample F57493-14MSD. Probable cause due to sample nonhomogeneity.

### Extractables by GCMS by Method SW846 8270C BY SIM

Matrix: AQ

Batch ID: OP25106

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Samples F57485-3MS, F57485-3MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix Spike Recoverys for 2-Methylnaphthalene, Anthracene, Phenanthrene are outside control limits. Probable cause: due to matrix interference.

Matrix: SO

Batch ID: OP25149

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Samples F57653-4MS, F57653-4MSD were used as the OC samples indicated.

OP25149-MB for Nitrobenzene-d5, 2-Fluorobiphenyl, Terphenyl-d14: Surrogate recoveries corrected for actual spike amount.

# Extractables by GC by Method FLORIDA-PRO

Matrix: AQ

Batch ID: OP25103

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Samples F57525-1MS, F57525-1MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

Matrix Spike Recovery for TPH (C8-C40) is outside control limits. Probable cause: due to matrix interference.

Matrix: SO

Batch ID: OP25098

All samples were extracted within the recommended method holding time.

All samples were analyzed within the recommended method holding time.

Samples F57546-2MS, F57546-2MSD were used as the QC samples indicated.

All method blanks for this batch meet method specific criteria.

# Wet Chemistry by Method SM19 2540B M

Matrix: SO

Batch ID: GN30420

Sample F57520-1DUP was used as the QC sample for Solids, Percent.

Accutest Laboratories Southeast (ALSE) certifies that this report meets the project requirements for analytical data produced for the samples as received at ALSE and as stated on the COC. ALSE certifies that the data meets the Data Quality Objectives for precision, accuracy and completeness as specified in the ALSE Quality Manual except as noted above. This report is to be used in its entirety. ALSE is not responsible for any assumptions of data quality if partial data packages are used.

Narrative prepared by:

Ellen Pampel, Inorganic QA (signature on file)

Date: May 30, 2008

Friday, May 30, 2008



# HOLDING

**SDG** F57525

| SORT | UNITS | NSAMPLE            | LAB_ID   | QC_TYPE | SAMP_DATE | EXTR_DATE | ANAL_DATE | SMP_EXTR | EXTR_ANL | SMP_ANL |
|------|-------|--------------------|----------|---------|-----------|-----------|-----------|----------|----------|---------|
| PCS  | %     | KWSM-SO-DRUM-4     | F57525-4 | NM      | 5/14/2008 | 5/15/2008 | 5/15/2008 | 1        | 0        | 1       |
| PCS  | %     | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/15/2008 | 5/15/2008 | 1        | 0        | 1       |
| os   | %     | KWSM-GW-DRUM-1     | F57525-1 | NM      | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| os   | %     | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/22/2008 | 5/23/2008 | 8        | 1        | 9       |
| os   | %     | KWSM-SO-DRUM-4     | F57525-4 | NM      | 5/14/2008 | 5/22/2008 | 5/26/2008 | 8        | 4        | 12      |
| os   | %     | KWSM-BCTF-GW-DRUM- | F57525-3 | NM      | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| os   | UG/KG | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/22/2008 | 5/23/2008 | 8        | 1        | 9       |
| os   | UG/KG | KWSM-SO-DRUM-4     | F57525-4 | NM      | 5/14/2008 | 5/22/2008 | 5/26/2008 | 8        | 4        | 12      |
| os   | UG/L  | KWSM-BCTF-GW-DRUM- | F57525-3 | NM      | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| os   | UG/L  | KWSM-GW-DRUM-1     | F57525-1 | NM .    | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| OV   | %     | KWSM-SO-DRUM-4     | F57525-4 | NM      | 5/14/2008 | 5/19/2008 | 5/19/2008 | 5        | 0        | 5       |
| OV   | %     | KWSM-BCTF-GW-DRUM- | F57525-3 | NM      | 5/14/2008 | 5/28/2008 | 5/28/2008 | 14       | 0        | 14      |
| OV   | %     | KWSM-GW-DRUM-1     | F57525-1 | NM      | 5/14/2008 | 5/28/2008 | 5/28/2008 | 14       | 0        | 14      |
| OV   | %     | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/19/2008 | 5/19/2008 | 5        | 0        | 5       |
| OV   | UG/KG | KWSM-SO-DRUM-4     | F57525-4 | NM      | 5/14/2008 | 5/19/2008 | 5/19/2008 | 5        | 0        | 5       |

Thursday, June 26, 2008

| SORT | UNITS | NSAMPLE            | LAB_ID   | QC_TYPE | SAMP_DATE | EXTR_DATE | ANAL_DATE | SMP_EXTR | EXTR_ANL | SMP_ANL |
|------|-------|--------------------|----------|---------|-----------|-----------|-----------|----------|----------|---------|
| OV   | UG/KĠ | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/19/2008 | 5/19/2008 | 5        | 0        | 5       |
| OV   | UG/L  | KWSM-BCTF-GW-DRUM- | F57525-3 | NM      | 5/14/2008 | 5/28/2008 | 5/28/2008 | 14       | 0        | 14      |
| OV   | UG/L  | KWSM-GW-DRUM-1     | F57525-1 | NM      | 5/14/2008 | 5/28/2008 | 5/28/2008 | 14       | 0        | 14      |
| TPH  | %     | KWSM-BCTF-GW-DRUM- | F57525-3 | NM      | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| TPH  | %     | KWSM-GW-DRUM-1     | F57525-1 | NM      | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| TPH  | %     | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/16/2008 | 5/21/2008 | 2        | 5        | 7       |
| TPH  | %     | KWSM-SO-DRUM-4     | F57525-4 | »NM     | 5/14/2008 | 5/16/2008 | 5/21/2008 | 2        | 5        | 7       |
| TPH  | MG/KG | KWSM-SO-DRUM-2     | F57525-2 | NM      | 5/14/2008 | 5/16/2008 | 5/21/2008 | 2        | 5        | 7       |
| TPH  | MG/KG | KWSM-SO-DRUM-4     | F57525-4 | NM      | 5/14/2008 | 5/16/2008 | 5/21/2008 | 2        | 5        | 7       |
| TPH  | MG/L  | KWSM-GW-DRUM-1     | F57525-1 | NM      | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |
| TPH  | MG/L  | KWSM-BCTF-GW-DRUM- | F57525-3 | NM .    | 5/14/2008 | 5/19/2008 | 5/20/2008 | 5        | 1        | 6       |

Thursday, June 26: 2008; Page 2 of 2

# Sample Summary

Tetra Tech NUS

Sigsbee Marina; NAS Key West, FL Project No: CTO-0095

Job No:

F57525

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |              | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|--------------|---------------------|
| F57525-1         | 05/14/08          | 10:30 GB | 05/15/08 | AQ            | Ground Water | KWSM-GW-DRUM-1      |
| F57525-2         | 05/14/08          | 10:15 GB | 05/15/08 | so            | Soil         | KWSM-SO-DRUM-2      |
| F57525-3         | 05/14/08          | 10:45 GB | 05/15/08 | AQ            | Ground Water | KWSM-BCTF-GW-DRUM-3 |
| F57525-4         | 05/14/08          | 11:00 GB | 05/15/08 | SO            | Soil         | KWSM-SO-DRUM-4      |

| ÷ | • | • |
|---|---|---|
| - | , | • |
| - |   | - |
|   |   |   |

4

| 3A            | CCUTE                                  | ST.                                      | 4405                                          | Vinelan       | nd Road,       | t, Suite (                              | Cus<br>C-15 Or<br>FAX: 40                    | rlando  | o, FÍ 32      | 32811        |                    |                                        |                  |               |               |              |                 | ر<br>—                                 |                                                  | TSKIFI   | 5<br>PAC     | 3E         | OF                                     |
|---------------|----------------------------------------|------------------------------------------|-----------------------------------------------|---------------|----------------|-----------------------------------------|----------------------------------------------|---------|---------------|--------------|--------------------|----------------------------------------|------------------|---------------|---------------|--------------|-----------------|----------------------------------------|--------------------------------------------------|----------|--------------|------------|----------------------------------------|
|               |                                        |                                          |                                               | ülər ret      |                |                                         | itest.com                                    |         | J-010         | ′            |                    |                                        | ^                | CCU           | (851 \        | Quote        | #               |                                        | - 1                                              | SKIII    | C#           |            |                                        |
|               | Client / Reporting Informa             |                                          | <del></del>                                   |               | Project        | ct Informa                              | ation                                        |         |               | _            |                    |                                        | $\Rightarrow$    |               |               |              |                 | Analytic                               | cal Info                                         | rmation  |              | _          | Matrix Codes                           |
| mpany N       | Varne TETRA TE                         | ECH NUS                                  |                                               | Project Nan   | <u>" Su</u>    | GSB                                     | SEE                                          | MF      | ARU           | NA.          | •                  |                                        | _                |               | .             | .            |                 | ,                                      |                                                  | 1 1      | 1            | 1          | DW - Drinking Wate<br>GW - Ground Wate |
| dress         |                                        |                                          |                                               | Street        |                |                                         |                                              |         |               |              |                    |                                        |                  |               | ,             | .            |                 | '                                      | 1                                                | 1 1      | ı            |            | WW - Water<br>SW - Surface Water       |
| y             | State                                  | Žφ                                       |                                               | City          |                |                                         |                                              |         | State         | ð.           |                    |                                        |                  |               | , ]           | .            | 1               | '                                      | 1                                                | 1 1      | 1            |            | SO - Soil<br>SL - Sludge               |
| GHUC          | K BAYAN E-mail                         |                                          |                                               | Project #     |                | To                                      | -095                                         |         | _             | _            | _                  |                                        |                  | 1             |               | .            | İ               | '                                      |                                                  | 1        | i [          |            | Q! - Oil<br>LIQ - Other Liquid         |
| one# (        | 8031640-6                              | ,714                                     |                                               | Fax #         |                |                                         |                                              |         |               |              |                    |                                        |                  |               | .             | _            |                 | '                                      | ł                                                | 1 1      | ı            |            | AIR Air                                |
| npler(s) Nafr | C-12102-1-1                            | BRAGANZA                                 | C                                             | Clent Purc'   | chase Order    | H #                                     |                                              |         |               |              |                    |                                        | $\neg$           | 113           | . +           | I            |                 | '                                      |                                                  | 1 1      | i            | 1          | SOL - Other Solid<br>WP - Wipe         |
|               |                                        | 12154                                    |                                               | COLLECTION    |                |                                         |                                              | CONTANA | VER INFORM    | ATION        |                    | 9 1                                    | 7                | 200           | 出             | 0            | ľ               | '                                      |                                                  |          | i            |            | ļ                                      |
| culesi        | Ciald ID / Daint /                     | ( 0 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - | 1                                             | 1 1           | ['             | '                                       | TOTAL #                                      | E   w   |               | F 8          | 8 1                | MTER .                                 | -                | >             | PAH           | TRPH         |                 | '                                      | 1                                                | 1 1      | i            | 1          |                                        |
| nole #        | Field ID / Point o                     |                                          | DATE                                          | TIVE          | SAMPLED<br>BY: | MATRIX                                  |                                              | WOWE    | 1 <u>8</u> 17 | 2 }          | 18 17              | ž 8                                    | ξ                |               | 1             |              |                 | <del></del> '                          | <del> </del>                                     | 4        |              | +          | LAB USE ONLY                           |
| <u>i</u>      | S KWSM-GV                              | N-DRUM-                                  | 5/14                                          | 1090          | 148            | 3 &W                                    |                                              | $\perp$ | $\bot$        | <del>`</del> | $\perp \downarrow$ | ⊥'                                     | Щ.               |               | 凶             | N_           |                 | <u> </u>                               | 1                                                | $\perp$  | $\vdash$     | +          |                                        |
| 2             |                                        | 2-DRUM-2                                 |                                               | 10:16         | <u> </u>       | 50                                      | <u>-                                    </u> | L       |               | · '          |                    | L                                      |                  | XI,           | X             | X            |                 | $\perp$                                | 1'                                               |          | 1            | $\perp$    | <u> </u>                               |
| 3             |                                        | -EW-DRUM-3                               |                                               | 10:45         | 5              | GW                                      | 1                                            | 7       | $\sqcap$      | . T          | $\Box$             | T                                      | П                | XI:           | $\mathbf{x}$  |              | $\neg$          | Τ.                                     |                                                  |          |              | T          | T                                      |
| 4             |                                        | O DRUMU                                  | 1                                             | 111/20        |                | 180                                     |                                              | 1       |               |              |                    | 1                                      | 1                | X             | <u>V</u>      | X            |                 | 1                                      |                                                  |          |              | $\top$     |                                        |
| <del></del>   | —————————————————————————————————————— | 3-Manual .                               | <del></del> _                                 | 11.204        | 7              | ar                                      | 1                                            | +       | +             | 十            | +                  | +                                      | ++               |               | $\leftarrow$  | $\leftarrow$ | +               | +-                                     | $\vdash$                                         | 1        | _            | +          |                                        |
|               |                                        |                                          |                                               | <del> </del>  | <b></b>        |                                         | +                                            | +-      | ++            | +            | +                  | +-                                     | ++               | +             | -             | _            | +-              | +                                      | <del>                                     </del> | +-+      | $\leftarrow$ | +          | +                                      |
| -             |                                        | <del></del>                              | <del></del> '                                 | <b>↓</b> —    | <del></del> '  | <del> </del> '                          | +                                            |         | 44            | +'           | ++                 | +'                                     | 4                | $\rightarrow$ | $\rightarrow$ | +            |                 | <del> </del> '                         | <u> </u> '                                       | ++       |              | +          |                                        |
| _             |                                        | ]                                        | <b></b> '                                     | <b>↓</b> ′    | <b></b> '      | 'ـــــــــــــــــــــــــــــــــــــ  | <del></del>                                  | —       | 44            | ——'          | 4                  | - -'                                   | 44               | _             |               |              | —               | Щ'                                     | Щ'                                               | Щ        | $\leftarrow$ | $\perp$    | <b></b>                                |
|               |                                        |                                          | <u>'</u> ــــــــــــــــــــــــــــــــــــ | <u></u> '     | L'             | L'                                      |                                              |         |               |              | Ш                  |                                        |                  |               |               |              |                 | 上_'                                    | <u> </u>                                         | $\perp$  | <u>_</u>     | $\perp$    |                                        |
|               |                                        |                                          | i '                                           | 1             | ſ .            | T 1                                     |                                              | 7       | $\Box$        | Τ,           | $\bigcap$          | Τ'                                     | $\prod$          | $\sim$        |               |              | 7               | Τ'                                     | Γ,                                               |          | ]            |            | Τ                                      |
| $\neg$        |                                        |                                          | 1                                             |               |                |                                         |                                              | 1       |               | ,            | $\Pi$              | 7                                      |                  | $\top$        |               |              | $\neg$          | 1                                      |                                                  |          | ,            |            | 1                                      |
|               |                                        |                                          | /                                             |               | $\overline{}$  |                                         |                                              | +       | 1             | +            | 1                  | +-                                     | 1                | +             | +             | _            | +               | +                                      | $\vdash$                                         | $\vdash$ |              | +          | +                                      |
|               |                                        | <del></del>                              |                                               | <del> </del>  | $\overline{}$  | <del></del>                             | ++                                           |         | ++            | +            | ++                 | +                                      | ++               | +             | -             | +            | +               | +-                                     | <del> </del>                                     | +        | ,            | +          | +                                      |
|               | TURNAROUND TIME                        | - (Rusiness Days)                        | ·'                                            | ببل           | '              | بــــــــــــــــــــــــــــــــــــــ |                                              | ,       | 1             | e Inform     | 1                  | 'ـــــــــــــــــــــــــــــــــــــ | 11               |               |               |              |                 | 'ـــــــــــــــــــــــــــــــــــــ | <u> </u>                                         | Commy    | ents / Ren   |            |                                        |
|               |                                        | Approved By: / Rush Co                   | Code                                          |               |                | ~****                                   | CIAL "A" (F                                  |         |               |              | attori             |                                        |                  |               | $\neg \tau$   |              |                 |                                        |                                                  | CO       | na , ,       | - Ibi nu   |                                        |
| 7-            | Days Standard                          | • •                                      |                                               | J             |                |                                         | =                                            |         |               |              |                    |                                        |                  |               | - 1           |              |                 |                                        |                                                  |          |              |            |                                        |
| _             | Day RUSH                               |                                          |                                               | ļ             | ıЩ∞            | OMMERC                                  | RCIAL "B" (R                                 | IESUL7  | IS PLI        | US QC        | ٦)                 |                                        |                  |               | ۲             |              |                 |                                        |                                                  |          |              |            |                                        |
|               | Day RUSH                               |                                          |                                               | 1             | [ AE           | EDT1 (Er                                | PA LEVEL :                                   | 3)      |               |              |                    |                                        |                  |               | 1             |              |                 |                                        |                                                  |          |              |            |                                        |
|               | Day EMERGENCY                          |                                          |                                               | ,             | [ ]FU          | JLT1 (EF                                | PA LEVEL 4                                   | 4)      |               |              |                    |                                        |                  |               | F             |              |                 |                                        |                                                  |          |              |            |                                        |
| =             | Day EMERGENCY Day EMERGENCY            |                                          |                                               | ţ             |                | DD'S                                    |                                              | ,       |               |              |                    |                                        |                  |               | - 1           |              |                 |                                        |                                                  |          |              |            |                                        |
| ☐ OTH         | •                                      |                                          |                                               | . J           | — ا            |                                         |                                              |         |               |              |                    |                                        |                  |               | }             |              |                 |                                        |                                                  |          |              |            |                                        |
|               | ergency or Rush T/A Data Av            | wailable VIA Email or Lab                | link                                          | ļ             | ĺ              |                                         |                                              |         |               |              |                    |                                        |                  |               |               |              |                 |                                        |                                                  |          |              |            |                                        |
|               |                                        | Sample Custody must be                   | docume                                        |               |                | time san                                | nples chan                                   | qe pos  | sessic        | on, incl     | uding/             | courier                                | r <u>deliv</u> r | ery.          |               |              |                 |                                        |                                                  |          |              |            |                                        |
| linguished    | d by Sampler:                          | Date Time:                               | Rece                                          | eived By      | y:             |                                         |                                              | _       | Reli          | elinquis     | ished b            | by:                                    |                  |               |               |              | Da              | ate Time                               | e:                                               |          | ceived By    | •          | 090                                    |
| Gar           | MAN                                    | x 51408                                  | 2                                             | <u>जन्म त</u> |                | <u>edex</u>                             |                                              |         | 3             | <del></del>  |                    | £1≅£                                   | <u>1223</u>      |               |               |              | 1               |                                        |                                                  |          |              |            | Heneror 5-15.9                         |
| inquisnec     | ι by:{} ' Λ                            | Date Time:                               | Hec⊧                                          | eived By      | J:             |                                         |                                              |         | Her           | elinquis     | shea r             | Jy:                                    |                  |               |               |              | Ua <sup>r</sup> | ite Time                               | e:                                               | Rec      | ceived By    | <i>j</i> : |                                        |

F57525: Chain of Custody

Page 1 of 2



| ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| CCUTEST'S JOB NUMBER: F57525 , CLIENT: TE tra fech PROJECT: Sies Bèa Mar: NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| ATE/TIME RECEIVED: 05.15-08 0900 # OF COOLERS RECEIVED: COOLER TEMPS: 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| TETHOD OF DELIVERY: FEDEX UPS ACCUTEST COURIER GREYHOUND DELIVERY OTHER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| IRBILL NUMBERS: 865   5823 8740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _    |
| COOLER INFORMATION  CUSTODY SEAL NOT PRESENT OR NOT INTACT  CHAIN OF CUSTODY NOT RECEIVED (COC)  ANALYSIS REQUESTED IS UNCLEAR OR MISSING  SAMPLE DATES OR TIMES UNCLEAR OR MISSING  TEMPERATURE CRITERIA NOT MET  WET ICE RECEIVED IN COOLER  TRIP BLANK INFORMATION  SAMPLE INFORMATION  SAMPLE LABELS NOT PRESENT ON ALL BOTTLES  SAMPLE RECEIVED IMPROPERLY PRESERVED  INSUFFICIENT VOLUME FOR ANALYSIS  TIMES ON COC DOES NOT MATCH LABEL(S)  VOC VIALS HAVE HEADSPACE (MACRO BUBBLES)  BOTTLES RECEIVED BUT ANALYSIS NOT REQUESTED  NO BOTTLES RECEIVED FOR ANALYSIS REQUESTED |      |
| TRIP BLANK NOT ON COC  TRIP BLANK INTACT  UNCLEAR FILTERING INSTRUCTIONS  UNCLEAR COMPOSITING INSTRUCTIONS  SAMPLE CONTAINER(S) RECEIVED BROKEN  RECEIVED WATER TRIP BLANK  RECEIVED SOIL TRIP BLANK  RECEIVED SOIL TRIP BLANK  RESIDUAL CHLORINE PRESENT  MISC. INFORMATION  UNCLEAR FILTERING INSTRUCTIONS  SAMPLE CONTAINER(S) RECEIVED BROKEN  SAMPLE CONTAINER(S) RECEIVED BROKEN  SAMPLE CONTAINER(S) RECEIVED BROKEN  SOLIDS JAR NOT RECEIVED  FRESIDUAL CHLORINE PRESENT  (APPLICABLE TO EPA 600 SERIES OR NORTH CAROLINA ORGANICS)                                          |      |
| TUMBER OF ENCORES?  TUMBER OF 5035 FIELD KITS?  TUMBER OF LAB FILTERED METALS?  TUMBER OF COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <br> |
| TECHNICIAN SIGNATURE/DATE F. M. 05-15-08 TECHNICIAN SIGNATURE/DATE & S-15-08 ASBD 12/17/07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _    |

F57525: Chain of Custody

Page 2 of 2

# Volatile Surrogate Recovery Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Method: SW846 8260B

Matrix: AQ

Samples and QC shown here apply to the above method

| Lab<br>Sample ID                                  | Lab<br>File ID                                   | <b>S</b> 1                    | S2                                    | S3                                     | \$4                            |
|---------------------------------------------------|--------------------------------------------------|-------------------------------|---------------------------------------|----------------------------------------|--------------------------------|
| F57525-1<br>F57525-3<br>F57610-7MS<br>F57610-7MSD | J038630.D<br>J038631.D<br>J038636.D<br>J038637.D | 100.0<br>95.0<br>97.0<br>98.0 | S2<br>101.0<br>99.0<br>104.0<br>102.0 | S3<br>105.0<br>110.0<br>101.0<br>101.0 | 102.0<br>109.0<br>99.0<br>98.0 |
| VJ2475-BS<br>VJ2475-MB                            | J038628.D<br>J038629.D                           | 101.0<br>98.0                 | 102.0<br>99.0                         | 100.0<br>109.0                         | 100.0<br>111.0                 |

Surrogate Compounds Recovery Limits

S1 = DibromofluoromethaneS2 = 1,2-Dichloroethane-D4

87-116% 76-127%

S3 = Toluene-D8

86-112%

S4 = 4-Bromofluorobenzene

84-120%

Page 1 of 1

# Volatile Surrogate Recovery Summary

Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Method: SW846 8260B

Matrix: SO

Samples and QC shown here apply to the above method

| Lab          | Lab        |          |       |       |       |
|--------------|------------|----------|-------|-------|-------|
| Sample ID    | File ID    | S1       | S2    | S3    | S4    |
| F57525-2     | G0050465.D | 96.0     | 98.0  | 101.0 | 96.0  |
| F57525-4     | G0050466.D | 102.0    | 97.0  | 97.0  | 99.0  |
| F57493-14MS  | G0050468.D | 92.0     | 103.0 | 97.0  | 92.0  |
| F57493-14MSD | G0050469.D | 98.0     | 97.0  | 98.0  | 91.0  |
| VG1912-BS    | G0050453.D | 102.0    | 96.0  | 98.0  | 109.0 |
| VG1912-MB    | G0050454.D | 100.0    | 92.0  | 96.0  | 101.0 |
| Surrogate    |            | Recovery | v     |       |       |

Compounds

Recovery Limits

S1 = Dibromofluoromethane S2 = Tolung D8

80-121%

S2 = Toluene-D8

71-130% 59-148%

S3 = 4-Bromofluorobenzene S4 = 1,2-Dichloroethane-D4

77-123%

5.6

Page 1 of 1

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Page 1 of 2

TETRSCAI Tetra Tech NUS Account:

Project: Sigsbee Marina; NAS Key West, FL

| Sample       | File ID    | DF | Analyzed | By. | Prep Date | Prep Batch | Analytical Batch |
|--------------|------------|----|----------|-----|-----------|------------|------------------|
| F57493-14MS  | G0050468.D | 1  | 05/19/08 | SH  | n/a       | n/a        | VG1912           |
| F57493-14MSD | G0050469.D | 1  | 05/19/08 | SH  | n/a       | n/a        | VG1912           |
| F57493-14    | G0050462.D | 1  | 05/19/08 | SH  | n/a       | n/a        | VG1912           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-2, F57525-4

| CAS No.            | Compound                   | F57493-<br>ug/kg | -14<br>Q | Spike<br>ug/kg | MS<br>ug/kg | MS<br>%              | MSD<br>ug/kg | MSD<br>%          | RPD                | Limits<br>Rec/RPD |
|--------------------|----------------------------|------------------|----------|----------------|-------------|----------------------|--------------|-------------------|--------------------|-------------------|
| 107-02-8           | Acrolein                   | ND               |          | 291            | ND          | 0*                   | 24.8         | 9*                | 200*               | 27-156/39         |
| 107-02-0           | Acrylonitrile              | ND               |          | 291            | 172         | 59                   | 166          | 59                | 4                  | 55-144/24         |
| 71-43-2            | Benzene                    | ND               |          | 58.2           | 57.8        | 99                   | 57.6         | 103               | 0                  | 78-130/25         |
| 75-27-4            | Bromodichloromethane       | ND               |          | 58.2           | 47.6        | 82                   | 49.5         | 89                | 4                  | 73-122/25         |
| 75-21-4<br>75-25-2 | Bromoform                  | ND               |          | 58.2           | 37.8        | 65*                  | 36.0         | 64*               | 5                  | 70-139/26         |
| 108-90-7           | Chlorobenzene              | ND               |          | 58.2           | 61.4        | 105                  | 57.9         | 104               | 6                  | 83-122/23         |
| 75-00-3            | Chloroethane               | ND               |          | 58.2           | 67.9        | 117                  | 68.1         | 122               | 0                  | 61-153/31         |
| 67-66-3            | Chloroform                 | ND               |          | 58.2           | 55.8        | 96                   | 56.6         | 101               | 1                  | 79-129/27         |
| 110-75-8           | 2-Chloroethyl vinyl ether  | ND               |          | 291            | 311         | 107                  | 310          | 111               | 0                  | 52-142/25         |
| 56-23-5            | Carbon tetrachloride       | ND               |          | 58.2           | 56.0        | 96                   | 56.4         | 101               | 1                  | 79-135/29         |
| 75-34-3            | 1,1-Dichloroethane         | ND               |          | 58.2           | 55.4        | 95                   | 57.8         | 103               | 4                  | 77-132/26         |
| 75-35-4            | 1,1-Dichloroethylene       | 0.98             | J        | 58.2           | 58.9        | 99                   | 58.7         | 103               | Ô                  | 66-132/27         |
| 107-06-2           | 1,2-Dichloroethane         | ND               | J        | 58.2           | 45.9        | 79                   | 47.9         | 86                | 4                  | 78-129/24         |
| 78-87-5            | 1,2-Dichloropropane        | ND               |          | 58.2           | 51.1        | 88                   | 51.2         | 92                | Ô                  | 74-127/27         |
| 124-48-1           | Dibromochloromethane       | ND               |          | 58.2           | 50.4        | 87                   | 48.0         | 86                | 5                  | 78-117/27         |
| 75-71-8            | Dichlorodifluoromethane    | ND               |          | 58.2           | 23.2        | 40                   | 24.5         | 44                | 5                  | 35-162/30         |
| 156-59-2           | cis-1,2-Dichloroethylene   | ND               |          | 58.2           | 50.6        | 87                   | 53.2         | 95                | 5                  | 74-123/26         |
|                    | cis-1,3-Dichloropropene    | ND               |          | 58.2           | 48.4        | 83                   | 48.1         | 86                | 1                  | 79-130/23         |
| 541-73-1           | m-Dichlorobenzene          | ND               |          | 58.2           | 59.3        | 102                  | 60.0         | 107               | 1                  | 82-126/29         |
| 95-50-1            | o-Dichlorobenzene          | ND               |          | 58.2           | 55.5        | 95                   | 57.3         | 102               | 3                  | 83-123/28         |
| 106-46-7           | p-Dichlorobenzene          | ND               |          | 58.2           | 60.2        | 103                  | 62.3         | 111               | 3                  | 84-124/28         |
| 156-60-5           | trans-1,2-Dichloroethylene | ND               |          | 58.2           | 57.0        | 98                   | 58.6         | 105               | 3                  | 77-129/27         |
|                    | trans-1,3-Dichloropropene  | ND               |          | 58.2           | 50.7        | 87                   | 48.3         | 86*               | 5                  | 87-131/27         |
| 100-41-4           | Ethylbenzene               | ND               |          | 58.2           | 63.4        | 109                  | 59.7         | 107               | 6                  | 82-124/25         |
| 74-83-9            | Methyl bromide             | ND               |          | 58.2           | 58.9        | 101                  | 61.7         | 110               | 5                  | 60-146/31         |
| 74-87-3            | Methyl chloride            | ND               |          | 58.2           | 36.2        | 62                   | 37.3         | 67                | 3                  | 58-163/26         |
| 75-09-2            | Methylene chloride         | 18.9             | В        | 58.2           | 55.6        | 63                   | 58.7         | 71                | 5                  | 62-140/25         |
| 1634-04-4          | Methyl Tert Butyl Ether    | ND               | _        | 58.2           | 44.5        | 76                   | 43.7         | 78                | 2                  | 70-131/25         |
| 71-55-6            | 1,1,1-Trichloroethane      | ND               |          | 58.2           | 59.2        | 102                  | 59.3         | 106               | 0                  | 80-133/27         |
| 79-34-5            | 1,1,2,2-Tetrachloroethane  | ND               |          | 58.2           | 46.2        | 79                   | 46.8         | 84                | 1                  | 70-128/30         |
| 79-00-5            | 1,1,2-Trichloroethane      | ND               |          | 58.2           | 49.0        | 84                   | 46.3         | 83                | 6                  | 76-118/28         |
| 127-18-4           | Tetrachloroethylene        | ND               |          | 58.2           | 65.1        | 112                  | 62.2         | 111               | 5                  | 79-132/27         |
| 108-88-3           | Toluene                    | ND               |          | 58.2           | 60.5        | 104                  | 57.6         | 103               | 5                  | 80-123/26         |
| 79-01-6            | Trichloroethylene          | ND               |          | 58.2           | 55.0        | 94                   | 57.3         | 102               | 4                  | 78-132/28         |
| 75-69-4            | Trichlorofluoromethane     | ND               |          | 58.2           | 65.0        | 112                  | 66.6         | 119               | 2                  | 67-149/29         |
| 75-01-4            | Vinyl chloride             | ND               |          | 58.2           | 45.1        | 77                   | 42.4         | 76                | 6                  | 60-145/29         |
|                    | ·                          |                  |          |                |             | encontrolleres, hote |              | pt 20767-0162-040 | nu salahanasa sada |                   |

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525 Account: TETRSCAI Tetra Tech NUS

Page 2 of 2

Project:

Sigsbee Marina; NAS Key West, FL

| Sample         File ID         DF           F57493-14MS         G0050468.D 1           F57493-14MSD         G0050469.D 1           F57493-14         G0050462.D 1 | Analyzed<br>05/19/08<br>05/19/08<br>05/19/08 | By Prep Date SH n/a SH n/a SH n/a | Prep Batch<br>n/a<br>n/a<br>n/a | Analytical Batch<br>VG1912<br>VG1912<br>VG1912 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------|---------------------------------|------------------------------------------------|

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-2, F57525-4

| CAS No.    | Compound              | F57493-14<br>ug/kg Q | Spike<br>ug/kg | MS MS ug/kg % | MSD<br>ug/kg | MSD<br>% | RPD | Limits<br>Rec/RPD |
|------------|-----------------------|----------------------|----------------|---------------|--------------|----------|-----|-------------------|
| 1330-20-7  | Xylene (total)        | ND                   | 175            | 187 107       | 178          | 106      | 5   | 83-127/24         |
| CAS No.    | Surrogate Recoveries  | MS                   | MSD            | F57493-14     | Limits       |          |     |                   |
| 1868-53-7  | Dibromofluoromethane  | 92%                  | 98%            | 99%           | 80-1219      | 6        |     |                   |
| 2037-26-5  | Toluene-D8            | 103%                 | 97%            | 93%           | 71-1309      | 6        |     |                   |
| 460-00-4   | 4-Bromofluorobenzene  | 97%                  | 98%            | 97%           | 59-1489      | 6        |     |                   |
| 17060-07-0 | 1,2-Dichloroethane-D4 | 92%                  | 91%            | 97%           | 77-1239      | 6        |     |                   |

Page 1 of 2

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Account: TETRSCAI Tetra Tech NUS

Project: Sigsbee Marina; NAS Key West, FL

| Sample         File ID         DF           F57610-7MS         J038636.D         20           F57610-7MSD         J038637.D         20           F57610-7         J038634.D         20 | Analyzed By | Prep Date | Prep Batch | Analytical Batch |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------------|------------------|
|                                                                                                                                                                                        | 05/28/08 JG | n/a       | n/a        | VJ2475           |
|                                                                                                                                                                                        | 05/28/08 JG | n/a       | n/a        | VJ2475           |
|                                                                                                                                                                                        | 05/28/08 JG | n/a       | n/a        | VJ2475           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-1, F57525-3

|            |                            | F57610 | 0-7 | Spike | MS   | MS   | MSD  | MSD |     | Limits    |
|------------|----------------------------|--------|-----|-------|------|------|------|-----|-----|-----------|
| CAS No.    | Compound                   | ug/1   | Q   | ug/l  | ug/1 | %    | ug/l | %   | RPD | Rec/RPD   |
| 107-02-8   | Acrolein                   | ND     |     | 2500  | 984  | 39   | 1000 | 40  | 2   | 33-157/21 |
| 107-13-1   | Acrylonitrile              | ND     |     | 2500  | 2430 | 97   | 2320 | 93  | 5   | 62-124/13 |
| 71-43-2    | Benzene                    | ND     |     | 500   | 502  | 100  | 494  | 99  | 2   | 83-124/11 |
| 75-27-4    | Bromodichloromethane       | ND     |     | 500   | 461  | 92   | 453  | 91  | 2   | 76-116/10 |
| 75-25-2    | Bromoform                  | ND     |     | 500   | 493  | 99   | 453  | 91  | 8   | 68-128/11 |
| 108-90-7   | Chlorobenzene              | ND     |     | 500   | 493  | 99   | 479  | 96  | 3   | 87-115/9  |
| 75-00-3    | Chloroethane               | ND     |     | 500   | 467  | 93   | 491  | 98  | 5   | 54-166/20 |
| 67-66-3    | Chloroform                 | ND     |     | 500   | 502  | 100  | 480  | 96  | 4   | 85-123/10 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | ND     |     | 2500  | 489  | 20*  | 392  | 16* | 22  | 63-125/24 |
| 56-23-5    | Carbon tetrachloride       | ND     |     | 500   | 526  | 105  | 522  | 104 | 1   | 74-139/13 |
| 75-34-3    | 1,1-Dichloroethane         | ND     |     | 500   | 517  | 103  | 505  | 101 | 2   | 82-127/10 |
| 75-35-4    | 1,1-Dichloroethylene       | 39.2   |     | 500   | 551  | 102  | 547  | 102 | 1   | 75-133/13 |
| 107-06-2   | 1,2-Dichloroethane         | ND     |     | 500   | 482  | 96   | 465  | 93  | 4   | 76-122/11 |
| 78-87-5    | 1,2-Dichloropropane        | ND     |     | 500   | 482  | 96   | 467  | 93  | 3   | 81-120/11 |
| 124-48-1   | Dibromochloromethane       | ND     |     | 500   | 472  | 94   | 450  | 90  | 5   | 74-116/11 |
| 75-71-8    | Dichlorodifluoromethane    | ND     |     | 500   | 325  | 65   | 375  | 75  | 14  | 34-158/22 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 6.7    | J   | 500   | 478  | 94   | 468  | 92  | 2   | 81-114/10 |
| 10061-01-5 | cis-1,3-Dichloropropene    | ND     |     | 500   | 480  | 96   | 463  | 93  | 4   | 83-119/10 |
| 541-73-1   | m-Dichlorobenzene          | ND     |     | 500   | 486  | 97   | 466  | 93  | 4   | 86-115/9  |
| 95-50-1    | o-Dichlorobenzene          | ND     |     | 500   | 479  | 96   | 463  | 93  | 3   | 85-115/9  |
| 106-46-7   | p-Dichlorobenzene          | ND     |     | 500   | 480  | 96   | 469  | 94  | 2   | 87-113/10 |
| 156-60-5   | trans-1,2-Dichloroethylene | ND     |     | 500   | 490  | 98   | 480  | 96  | 2   | 82-126/10 |
|            | trans-1,3-Dichloropropene  | ND     |     | 500   | 525  | 105  | 498  | 100 | 5   | 87-123/10 |
| 100-41-4   | Ethylbenzene               | ND     |     | 500   | 526  | 105  | 502  | 100 | 5   | 87-118/10 |
| 74-83-9    | Methyl bromide             | ND     |     | 500   | 459  | 92   | 495  | 99  | 8   | 55-151/21 |
| 74-87-3    | Methyl chloride            | ND     |     | 500   | 455  | 91   | 482  | 96  | 6   | 55-173/22 |
| 75-09-2    | Methylene chloride         | ND     |     | 500   | 415  | 83   | 422  | 84  | 2   | 69-125/11 |
| 1634-04-4  | Methyl Tert Butyl Ether    | ND     |     | 500   | 426  | 85   | 416  | 83  | 2   | 75-116/10 |
| 71-55-6    | 1,1,1-Trichloroethane      | 9.6    | J   | 500   | 523  | 103  | 501  | 98  | 4   | 79-133/11 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | ND     |     | 500   | 468  | 94   | 456  | 91  | 3   | 71-120/11 |
| 79-00-5    | 1,1,2-Trichloroethane      | ND     |     | 500   | 492  | 98   | 464  | .93 | 6   | 80-114/11 |
| 127-18-4   | Tetrachloroethylene        | ND     |     | 500   | 505  | 101  | 479  | 96  | 5   | 80-131/12 |
| 108-88-3   | Toluene                    | ND     |     | 500   | 530  | 106  | 503  | 101 | 5   | 86-116/10 |
| 79-01-6    | Trichloroethylene          | 823    |     | 500   | 1460 | 127* | 1410 | 117 | 3   | 85-124/10 |
| 75-69-4    | Trichlorofluoromethane     | ND     |     | 500   | 488  | 98   | 437  | 87  | 11  | 66-156/15 |
| 75-01-4    | Vinyl chloride             | ND     |     | 500   | 446  | 89   | 474  | 95  | 6   | 57-153/22 |



# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample      | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|----|----------|----|-----------|------------|------------------|
| F57610-7MS  | J038636.D | 20 | 05/28/08 | JG | n/a       | n/a        | VJ2475           |
| F57610-7MSD | J038637.D | 20 | 05/28/08 | JG | n/a       | n/a        | VJ2475           |
| F57610-7    | J038634.D | 20 | 05/28/08 | JG | n/a       | n/a        | VJ2475           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-1, F57525-3

| CAS No.    | Compound              | F57610-7<br>ug/l Q | Spike<br>ug/l | MS<br>ug/l | MS<br>% | MSD<br>ug/l | MSD<br>% | RPD | Limits<br>Rec/RPD |
|------------|-----------------------|--------------------|---------------|------------|---------|-------------|----------|-----|-------------------|
| 1330-20-7  | Xylene (total)        | ND                 | 1500          | 1660       | 111     | 1590        | 106      | 4   | 86-120/10         |
| CAS No.    | Surrogate Recoveries  | MS                 | MSD           | F57        | 7610-7  | Limits      |          |     |                   |
| 1868-53-7  | Dibromofluoromethane  | 97%                | 98%           | 100        | 1%      | 87-116%     | ,        |     |                   |
| 17060-07-0 | 1,2-Dichloroethane-D4 | 104%               | 102%          | 999        | 6       | 76-127%     |          |     |                   |
| 2037-26-5  | Toluene-D8            | 101%               | 101%          | 107        | %       | 86-112%     |          |     |                   |
| 460-00-4   | 4-Bromofluorobenzene  | 99%                | 98%           | 111        |         | 84-120%     |          |     |                   |



Page 2 of 2

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| 1         |          |     |          |    |           |            |                  |
|-----------|----------|-----|----------|----|-----------|------------|------------------|
| Sample    | File ID  | DF  | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
| VG1912-BS | G0050453 | D 1 | 05/19/08 | SH | n/a       | n/a        | VG1912           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-2, F57525-4

|            |                            | Spike    | BSP   | BSP                     |        |
|------------|----------------------------|----------|-------|-------------------------|--------|
| CAS No.    | Compound                   | ug/kg    | ug/kg | %                       | Limits |
| 107-02-8   | Acrolein                   | 250      | 92.5  | 37                      | 27-156 |
| 107-02-8   | Acrylonitrile              | 250      | 254   | 102                     | ž.     |
| 71-43-2    | Benzene                    | 50       | 53.7  | 107                     | 78-130 |
| 75-27-4    | Bromodichloromethane       | 50<br>50 | 47.4  | 95                      | 73-130 |
| 75-25-2    | Bromoform                  | 50<br>50 | 42.6  | 85                      | 70-122 |
| 108-90-7   | Chlorobenzene              | 50<br>50 | 54.5  | 109                     | 83-122 |
| 75-00-3    | Chloroethane               | 50<br>50 | 62.4  | 125                     | 61-153 |
| 67-66-3    | Chloroform                 | 50<br>50 | 52.2  | 104                     | 79-129 |
| 110-75-8   | 2-Chloroethyl vinyl ether  | 250      | 362   | 145*                    | 52-142 |
| 56-23-5    | Carbon tetrachloride       | 50       | 53.2  | 106                     | 79-135 |
| 75-34-3    | 1,1-Dichloroethane         | 50       | 54.0  | 108                     | 77-132 |
| 75-35-4    | 1,1-Dichloroethylene       | 50       | 55.9  | 112                     | 66-132 |
| 107-06-2   | 1,2-Dichloroethane         | 50       | 50.1  | 100                     | 78-129 |
| 78-87-5    | 1,2-Dichloropropane        | 50       | 48.8  | 98                      | 74-127 |
| 124-48-1   | Dibromochloromethane       | 50       | 49.7  | 99                      | 78-117 |
| 75-71-8    | Dichlorodifluoromethane    | 50       | 21.1  | 42                      | 35-162 |
| 156-59-2   | cis-1,2-Dichloroethylene   | 50       | 49.2  | 98                      | 74-123 |
| 10061-01-5 | cis-1,3-Dichloropropene    | 50       | 51.5  | 103                     | 79-130 |
| 541-73-1   | m-Dichlorobenzene          | 50       | 54.6  | 109                     | 82-126 |
| 95-50-1    | o-Dichlorobenzene          | 50       | 53.1  | 106                     | 83-123 |
| 106-46-7   | p-Dichlorobenzene          | 50       | 55.1  | 110                     | 84-124 |
| 156-60-5   | trans-1,2-Dichloroethylene | 50       | 53.8  | 108                     | 77-129 |
| 10061-02-6 | trans-1,3-Dichloropropene  | 50       | 49.3  | 99                      | 87-131 |
| 100-41-4   | Ethylbenzene               | 50       | 55.8  | 112                     | 82-124 |
| 74-83-9    | Methyl bromide             | 50       | 45.0  | 90                      | 60-146 |
| 74-87-3    | Methyl chloride            | 50       | 36.2  | 72                      | 58-163 |
| 75-09-2    | Methylene chloride         | 50       | 50.5  | 101                     | 4 4    |
| 1634-04-4  | Methyl Tert Butyl Ether    | 50       | 48.1  | 96                      | 70-131 |
| 71-55-6    | 1,1,1-Trichloroethane      | 50       | 56.7  | 113                     | 80-133 |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | 50       | 50.6  | 101                     | 70-128 |
| 79-00-5    | 1,1,2-Trichloroethane      | 50       | 46.8  | 94                      | 76-118 |
| 127-18-4   | Tetrachloroethylene        | 50       | 54.4  | 109                     | 79-132 |
| 108-88-3   | Toluene                    | 50       | 52.4  | 105                     | 80-123 |
| 79-01-6    | Trichloroethylene          | 50       | 51.9  | 104                     | 78-132 |
| 75-69-4    | Trichlorofluoromethane     | 50       | 61.1  | 122                     | 67-149 |
| 75-01-4    | Vinyl chloride             | 50       | 40.3  | 81                      | 60-145 |
|            | v                          |          |       | e constitue de la bibli | ri.    |

Page 2 of 2

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample    | File ID    | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-----------|------------|----|----------|----|-----------|------------|------------------|
| VG1912-BS | G0050453.D | 1  | 05/19/08 | SH | n/a       | n/a        | VG1912           |
| 1         |            |    |          |    |           |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-2, F57525-4

| CAS No.    | Compound              | Spike<br>ug/kg | BSP<br>ug/kg | BSP<br>% | Limits |
|------------|-----------------------|----------------|--------------|----------|--------|
| 1330-20-7  | Xylene (total)        | 150            | 165          | 110      | 83-127 |
| CAS No.    | Surrogate Recoveries  | BSP            | Lin          | nits     |        |
| 1868-53-7  | Dibromofluoromethane  | 102%           | 80-          | 121%     |        |
| 2037-26-5  | Toluene-D8            | 96%            | 71-          | 130%     |        |
| 460-00-4   | 4-Bromofluorobenzene  | 98%            | 59-          | 148%     |        |
| 17060-07-0 | 1,2-Dichloroethane-D4 | 109%           | 77-          | 123%     |        |

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample    | File ID   | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|-----------|-----------|----|----------|----|-----------|------------|------------------|
| VJ2475-BS | J038628.D | 1  | 05/28/08 | JG | n/a       | n/a        | VJ2475           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-1, F57525-3

| CAS No.            | Compound                   | Spike<br>ug/l | BSP<br>ug/l  | BSP<br>%          | Limits |
|--------------------|----------------------------|---------------|--------------|-------------------|--------|
| 107.00.0           | A1-1-                      | 105           | 540          | Epik estélők kerü | 00 155 |
| 107-02-8           | Acrolein                   | 125           | 54.8         | 44                | 33-157 |
| 107-13-1           | Acrylonitrile              | 125           | 136          | 109               | 62-124 |
| 71-43-2            | Benzene                    | 25            | 25.9         | 104               | 83-124 |
| 75-27-4            | Bromodichloromethane       | 25            | 24.4         | 98                | 76-116 |
| 75-25-2            | Bromoform                  | 25            | 25.1         | 100               | 68-128 |
| 108-90-7           | Chlorobenzene              | 25            | 25.4         | 102               | 87-115 |
| 75-00-3            | Chloroethane               | 25            | 28.2         | 113               | 54-166 |
| 67-66-3            | Chloroform                 | 25            | 25.8         | 103               | 85-123 |
| 110-75-8           | 2-Chloroethyl vinyl ether  | 125           | 106          | 85                | 63-125 |
| 56-23-5            | Carbon tetrachloride       | 25            | 28.8         | 115               | 74-139 |
| 75-34-3            | 1,1-Dichloroethane         | 25            | 26.7         | 107               | 82-127 |
| 75-35-4            | 1,1-Dichloroethylene       | 25            | 27.3         | 109               | 75-133 |
| 107-06-2           | 1,2-Dichloroethane         | 25            | 23.9         | 96                | 76-122 |
| 78-87-5            | 1,2-Dichloropropane        | 25            | 25.3         | 101               | 81-120 |
| 124-48-1           | Dibromochloromethane       | 25            | 24.4         | 98                | 74-116 |
| 75-71-8            | Dichlorodifluoromethane    | 25            | 21.2         | 85                | 34-158 |
| 156-59-2           | cis-1,2-Dichloroethylene   | 25            | 25.5         | 102               | 81-114 |
| 10061-01-5         | cis-1,3-Dichloropropene    | 25            | 25.9         | 104               | 83-119 |
| 541-73-1           | m-Dichlorobenzene          | 25            | 25.4         | 102               | 86-115 |
| 95-50-1            | o-Dichlorobenzene          | 25            | 25.1         | 100               | 85-115 |
| 106-46-7           | p-Dichlorobenzene          | 25            | 25.3         | 101               | 87-113 |
| 156-60-5           | trans-1,2-Dichloroethylene | 25            | 26.5         | 106.              | 82-126 |
| 10061-02-6         | trans-1,3-Dichloropropene  | 25            | 26.6         | 106               | 87-123 |
| 100-41-4           | Ethylbenzene               | 25            | 26.6         | 106               | 87-118 |
| 74-83-9            | Methyl bromide             | 25            | 28.3         | 113               | 55-151 |
| 74-87-3            | Methyl chloride            | 25            | 25.5         | 102               | 55-173 |
| 75-09-2            | Methylene chloride         | 25            | 21.4         | 86                | 69-125 |
| 1634-04-4          | Methyl Tert Butyl Ether    | 25            | 22.9         | 92                | 75-116 |
| 71-55-6            | 1,1,1-Trichloroethane      | 25            | 27.5         | 110               | 79-133 |
| 79-34-5            | 1,1,2,2-Tetrachloroethane  | 25            | 23.9         | 96                | 71-120 |
| 79-00-5            | 1,1,2-Trichloroethane      | 25            | 23.9         | 96                | 80-114 |
| 127-18-4           | Tetrachloroethylene        | 25            | 26.2         | 105               | 80-114 |
| 108-88-3           | Toluene                    | 25            | 26.2         | 105               | 86-116 |
| 79-01-6            | Trichloroethylene          | 25<br>25      | 25.7         | 103               | 85-124 |
| 75-69-4            | Trichlorofluoromethane     | 25<br>25      | 30.5         | 103<br>122        | 66-156 |
| 75-09-4<br>75-01-4 | Vinyl chloride             | 25<br>25      | 30.3<br>27.0 | 108               | 57-153 |
| 1J-U1-4            | vinyi chioriue             | 2J            | 21.0         | 100               | 37-133 |

# Blank Spike Summary Job Number: F57525 Account: TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample    | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-----------|-----------|----|----------|----|-----------|------------|------------------|
| VJ2475-BS | J038628.D | 1  | 05/28/08 | JG | n/a       | n/a        | VJ2475           |
|           |           | •  | •        |    |           |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-1, F57525-3

| CAS No.                                          | Compound                                                                            | Spike<br>ug/l                | BSP<br>ug/l  | BSP<br>%                     | Limits |
|--------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------|--------------|------------------------------|--------|
| 1330-20-7                                        | Xylene (total)                                                                      | 75 84.2                      |              | 112                          | 86-120 |
| CAS No.                                          | Surrogate Recoveries                                                                | BSP                          | Lim          | iits                         |        |
| 1868-53-7<br>17060-07-0<br>2037-26-5<br>460-00-4 | Dibromofluoromethane<br>1,2-Dichloroethane-D4<br>Toluene-D8<br>4-Bromofluorobenzene | 101%<br>102%<br>100%<br>100% | 76-1<br>86-1 | 116%<br>127%<br>112%<br>120% |        |

Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample    | File ID  | DF   | Analyzed | By | Prep Date | Prep Batch | Analytical B |
|-----------|----------|------|----------|----|-----------|------------|--------------|
| VG1912-MB | G0050454 | .D 1 | 05/19/08 | SH | n/a       | n/a        | VG1912       |

Batch

VG1912

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-2, F57525-4

| CAS No.    | Compound                   | Result | RL  | MDL | Units Q |
|------------|----------------------------|--------|-----|-----|---------|
| 107-02-8   | Acrolein                   | ND.    | 25  | 11  | ug/kg   |
| 107-13-1   | Acrylonitrile              | ND     | 25  | 7.9 | ug/kg   |
| 71-43-2    | Benzene                    | ND     | 5.0 | 1.0 | ug/kg   |
| 75-27-4    | Bromodichloromethane       | ND     | 5.0 | 1.0 | ug/kg   |
| 75-25-2    | Bromoform                  | ND     | 5.0 | 1.0 | ug/kg   |
| 108-90-7   | Chlorobenzene              | ND     | 5.0 | 1.0 | ug/kg   |
| 75-00-3    | Chloroethane               | ND     | 5.0 | 2.6 | ug/kg   |
| 67-66-3    | Chloroform                 | ND     | 5.0 | 1.0 | ug/kg   |
| 110-75-8   | 2-Chloroethyl vinyl ether  | ND     | 25  | 5.0 | ug/kg   |
| 56-23-5    | Carbon tetrachloride       | ND     | 5.0 | 1.3 | ug/kg   |
| 75-34-3    | 1,1-Dichloroethane         | ND     | 5.0 | 1.1 | ug/kg   |
| 75-35-4    | 1,1-Dichloroethylene       | ND     | 5.0 | 1.0 | ug/kg   |
| 107-06-2   | 1,2-Dichloroethane         | ND     | 5.0 | 1.0 | ug/kg   |
| 78-87-5    | 1,2-Dichloropropane        | ND     | 5.0 | 1.3 | ug/kg   |
| 124-48-1   | Dibromochloromethane       | ND     | 5.0 | 1.0 | ug/kg   |
| 75-71-8    | Dichlorodifluoromethane    | ND     | 5.0 | 2.0 | ug/kg   |
| 156-59-2   | cis-1,2-Dichloroethylene   | ND     | 5.0 | 1.0 | ug/kg   |
| 10061-01-5 | cis-1,3-Dichloropropene    | ND     | 5.0 | 1.0 | ug/kg   |
| 541-73-1   | m-Dichlorobenzene          | ND     | 5.0 | 1.0 | ug/kg   |
| 95-50-1    | o-Dichlorobenzene          | ND     | 5.0 | 1.0 | ug/kg   |
| 106-46-7   | p-Dichlorobenzene          | ND     | 5.0 | 1.0 | ug/kg   |
| 156-60-5   | trans-1,2-Dichloroethylene | ND     | 5.0 | 1.0 | ug/kg   |
| 10061-02-6 | trans-1,3-Dichloropropene  | ŊD     | 5.0 | 1.0 | ug/kg   |
| 100-41-4   | Ethylbenzene               | ND     | 5.0 | 1.0 | ug/kg   |
| 74-83-9    | Methyl bromide             | ND     | 5.0 | 1.8 | ug/kg   |
| 74-87-3    | Methyl chloride            | ND     | 5.0 | 2.0 | ug/kg   |
| 75-09-2    | Methylene chloride         | 7.0    | 10  | 5.0 | ug/kg J |
| 1634-04-4  | Methyl Tert Butyl Ether    | ND -   | 5.0 | 1.0 | ug/kg   |
| 71-55-6    | 1,1,1-Trichloroethane      | ND .   | 5.0 | 1.0 | ug/kg   |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | ND     | 5.0 | 1.3 | ug/kg   |
| 79-00-5    | 1,1,2-Trichloroethane      | ND     | 5.0 | 1.0 | ug/kg   |
| 127-18-4   | Tetrachloroethylene        | ND     | 5.0 | 1.0 | ug/kg   |
| 108-88-3   | Toluene                    | ND     | 5.0 | 1.0 | ug/kg   |
| 79-01-6    | Trichloroethylene          | ND     | 5.0 | 1.0 | ug/kg   |
| 75-69-4    | Trichlorofluoromethane     | ND     | 5.0 | 1.6 | ug/kg   |
| 75-01-4    | Vinyl chloride             | ND     | 5.0 | 1.4 | ug/kg   |



Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample VG1912-MB

File ID G0050454.D 1

DF Analyzed 05/19/08

By SH Prep Date

n/a

Prep Batch

Analytical Batch

n/a

VG1912

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-2, F57525-4

CAS No. Compound Result

RL

MDL

2.1

Units Q

1330-20-7 Xylene (total) ND 15

ug/kg

CAS No. Surrogate Recoveries Limits

1868-53-7

Dibromofluoromethane

100% 80-121%

2037-26-5

Toluene-D8

92% 71-130%

460-00-4

4-Bromofluorobenzene 17060-07-0 1,2-Dichloroethane-D4

96% 101%

59-148% 77-123%

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample    | File ID   | DF | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-----------|-----------|----|----------|----|-----------|------------|------------------|
| VJ2475-MB | J038629.D | 1  | 05/28/08 | JG | n/a       | n/a        | VJ2475           |

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-1, F57525-3

| CAS No.    | Compound                   | Result                                 | RL      | MDL  | Units Q |
|------------|----------------------------|----------------------------------------|---------|------|---------|
| 107-02-8   | Acrolein                   | ND                                     | 20      | 9.0  | ug/l    |
| 107-13-1   | Acrylonitrile              | ND                                     | 10      | 2.0  | ug/l    |
| 71-43-2    | Benzene                    | ND                                     | 1.0     | 0.20 | ug/l    |
| 75-27-4    | Bromodichloromethane       | ND                                     | 1.0     | 0.29 | ug/l    |
| 75-25-2    | Bromoform                  | ND                                     | 1.0     | 0.28 | ug/l    |
| 108-90-7   | Chlorobenzene              | ND                                     | 1.0     | 0.20 | ug/l    |
| 75-00-3    | Chloroethane               | ND                                     | 2.0     | 0.46 | ug/l    |
| 67-66-3    | Chloroform                 | ND                                     | 1.0     | 0.21 | ug/l    |
| 110-75-8   | 2-Chloroethyl vinyl ether  | ND                                     | 5.0     | 1.2  | ug/l    |
| 56-23-5    | Carbon tetrachloride       | ND                                     | 1.0     | 0.29 | ug/l    |
| 75-34-3    | 1,1-Dichloroethane         | ND                                     | 1.0     | 0.25 | ug/l    |
| 75-35-4    | 1,1-Dichloroethylene       | ND                                     | 1.0     | 0.23 | ug/l    |
| 107-06-2   | 1,2-Dichloroethane         | ND                                     | 1.0     | 0.20 | ug/l    |
| 78-87-5    | 1,2-Dichloropropane        | ND                                     | 1.0     | 0.25 | ug/l    |
| 124-48-1   | Dibromochloromethane       | ND                                     | 1.0     | 0.20 | ug/l    |
| 75-71-8    | Dichlorodifluoromethane    | ND                                     | 2.0     | 1.0  | ug/l    |
| 156-59-2   | cis-1,2-Dichloroethylene   | ND                                     | 1.0     | 0.28 | ug/l    |
| 10061-01-5 |                            | ND                                     | 1.0     | 0.24 | ug/l    |
| 541-73-1   | m-Dichlorobenzene          | ND                                     | 1.0     | 0.23 | ug/l    |
| 95-50-1    | o-Dichlorobenzene          | ND                                     | 1.0     | 0.20 | ug/l    |
| 106-46-7   | p-Dichlorobenzene          | ND                                     | 1.0     | 0.22 | ug/l    |
| 156-60-5   | trans-1,2-Dichloroethylene | ND                                     | 1.0     | 0.20 | ug/l    |
| 10061-02-6 | trans-1,3-Dichloropropene  | ND                                     | 1.0     | 0.21 | ug/l    |
| 100-41-4   | Ethylbenzene               | ND                                     | 1.0     | 0.20 | ug/l    |
| 74-83-9    | Methyl bromide             | ND                                     | 2.0     | 0.54 | ug/l    |
| 74-87-3    | Methyl chloride            | ND                                     | 2.0     | 0.38 | ug/l    |
| 75-09-2    | Methylene chloride         | 1.1                                    | § 5.0   | 1.0  | ug/l J  |
| 1634-04-4  | Methyl Tert Butyl Ether    | ND                                     | 1.0     | 0.25 | ug/l    |
| 71-55-6    | 1,1,1-Trichloroethane      | ND                                     | 1.0     | 0.29 | ug/l    |
| 79-34-5    | 1,1,2,2-Tetrachloroethane  | ND .                                   | 1.0     | 0.37 | ug/l    |
| 79-00-5    | 1,1,2-Trichloroethane      | ND                                     | 1.0     | 0.30 | ug/l    |
| 127-18-4   | Tetrachloroethylene        | ND                                     | 1.0     | 0.25 | ug/l    |
| 108-88-3   | Toluene                    | ND                                     | 1.0     | 0.27 | ug/l    |
| 79-01-6    | Trichloroethylene          | ND                                     | 1.0     | 0.38 | ug/l    |
| 75-69-4    | Trichlorofluoromethane     | ND                                     | 2.0     | 0.43 | ug/l    |
| 75-01-4    | Vinyl chloride             | ND                                     | 1.0     | 0.34 | ug/l    |
|            | •                          | agreement en plant de premierie de l'A | estri f |      |         |



Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample File ID DF Analyzed Ву 1

VJ2475-MB

J038629.D

05/28/08

JĞ

Prep Date n/a

Prep Batch

**Analytical Batch** 

VJ2475 n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

F57525-1, F57525-3

CAS No. Compound Result

RL

MDL

Units Q

1330-20-7 Xylene (total) ND

3.0

0.56 ug/l

CAS No. Surrogate Recoveries Limits

Dibromofluoromethane 1868-53-7

87-116%

17060-07-0 1,2-Dichloroethane-D4 2037-26-5 Toluene-D8

99% 109%

98%

76-127% 86-112%

460-00-4 4-Bromofluorobenzene 111%

84-120%

## Instrument Performance Check (BFB)

Job Number:

F57525

TETRSCAI Tetra Tech NUS Account:

Project: Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: VG1901-BFB G0050132.D

Injection Date: 05/05/08 Injection Time: 13:53

Instrument ID: GCMSG

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail |
|-----|------------------------------------|------------------|-------------------------|-----------|
| 50  | 15.0 - 40.0% of mass 95            | 43277            | 20.2                    | Pass      |
| 75  | 30.0 - 60.0% of mass 95            | 94771            | 44.3                    | Pass      |
| 95  | Base peak, 100% relative abundance | 213781           | 100.0                   | Pass      |
| 96  | 5.0 - 9.0% of mass 95              | 14469            | 6.8                     | Pass      |
| 173 | Less than 2.0% of mass 174         | 33               | 0.02 (0.02)             | a Pass    |
| 174 | 50.0 - 100.0% of mass 95           | 182982           | 85.6                    | Pass      |
| 175 | 5.0 - 9.0% of mass 174             | 13895            | 6.5 (7.6)               | Pass      |
| 176 | 95.0 - 101.0% of mass 174          | 179473           | 84.0 (98.1)             | a Pass    |
| 177 | 5.0 - 9.0% of mass 176             | 12129            | 5.7 (6.8) <sup>1</sup>  | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab            | Lab        | Date     | Time     | Hours  | Client                                     |
|----------------|------------|----------|----------|--------|--------------------------------------------|
| Sample ID      | File ID    | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|                |            |          |          |        |                                            |
| VG1901-IC1901  | G0050133.D | 05/05/08 | 14:23    | 00:30  | Initial cal 1                              |
| VG1901-IC1901  | G0050134.D | 05/05/08 | 14:49    | 00:56  | Initial cal 2                              |
| VG1901-IC1901  | G0050135.D | 05/05/08 | 15:14    | 01:21  | Initial cal 3                              |
| VG1901-ICC1901 | G0050136.D | 05/05/08 | 15:40    | 01:47  | Initial cal 4                              |
| VG1901-IC1901  | G0050137.D | 05/05/08 | 16:05    | 02:12  | Initial cal 5                              |
| VG1901-IC1901  | G0050138.D | 05/05/08 | 16:31    | 02:38  | Initial cal 6                              |
| VG1901-ICV1901 | G0050140.D | 05/05/08 | 17:22    | 03:29  | Initial cal verification 3                 |
| VG1901-BS      | G0050141.D | 05/05/08 | 17:47    | 03:54  | Blank Spike                                |
| VG1901-MB      | G0050142.D | 05/05/08 | 18:13    | 04:20  | Method Blank                               |
| ZZZZZZ         | G0050143.D | 05/05/08 | 18:38    | 04:45  | (unrelated sample)                         |
| ZZZZZZ         | G0050144.D | 05/05/08 | 19:04    | 05:11  | (unrelated sample)                         |
| ZZZZZZ         | G0050145.D | 05/05/08 | 19:29    | 05:36  | (unrelated sample)                         |
| ZZZZZZ         | G0050147.D | 05/05/08 | 20:21    | 06:28  | (unrelated sample)                         |
| ZZZZZZ         | G0050148.D | 05/05/08 | 20:46    | 06:53  | (unrelated sample)                         |
| F57131-2       | G0050149.D | 05/05/08 | 21:12    | 07:19  | (used for QC only; not part of job F57525) |
| F57131-2MS     | G0050150.D | 05/05/08 | 21:37    | 07:44  | Matrix Spike                               |
| F57131-2MSD    | G0050151.D | 05/05/08 | 22:03    | 08:10  | Matrix Spike Duplicate                     |
| ZZZZZZ         | G0050152.D | 05/05/08 | 22:28    | 08:35  | (unrelated sample)                         |
| ZZZZZZ         | G0050153.D | 05/05/08 | 22:54    | 09:01  | (unrelated sample)                         |
| ZZZZZZ         | G0050154.D | 05/05/08 | 23:19    | 09:26  | (unrelated sample)                         |
| ZZZZZZ         | G0050155.D | 05/05/08 | 23:45    | 09:52  | (unrelated sample)                         |
| ZZZZZZ         | G0050156.D | 05/06/08 | 00:10    | 10:17  | (unrelated sample)                         |
| ZZZZZZ         | G0050157.D | 05/06/08 | 00:36    | 10:43  | (unrelated sample)                         |
| ZZZZZZ         | G0050159.D | 05/06/08 | 01:01    | 11:08  | (unrelated sample)                         |
|                |            |          |          |        | •                                          |



<sup>(</sup>b) Value is % of mass 176

Job Number:

F57525

Account:

**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

Sample:

VG1901-BFB

Injection Date: 05/05/08

Lab File ID:

G0050132.D

Injection Time: 13:53

Instrument ID: GCMSG

Lab Sample ID Lab

Date

Time

Hours

Client

File ID

Analyzed

Analyzed

Lapsed

Sample ID

ZZZZZZ

G0050160.D 05/06/08

01:27

11:34

(unrelated sample)

Account:

TETRSCAI Tetra Tech NUS

Sample: Lab FileID: VG1901-ICC1901 G0050136.D

Project:

Sigsbee Marina; NAS Key West, FL

Response Factor Report MSVOA1

: C:\MSDCHEM\1\METHODS\APP9-GS.M (RTE Integrator) Method

Title : SW-846 Method 5035A/8260B Last Update: Tue May 06 12:42:40 2008
Response via: Initial Calibration

|                                                          | ĸe:                              | spon | se via : Initial Ca                                                                                                                                                          | librati                                                                                  | on                                                                            |                                                                                     |                                                                               |                                                              |                                                                           |                                                                               |                                                                                |
|----------------------------------------------------------|----------------------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                          | Ca:<br>1<br>5                    |      | ation Files<br>0050133.D 2 =G00<br>=G0050137.D 6                                                                                                                             | 50134.D<br>=G00                                                                          |                                                                               |                                                                                     | 0135.D                                                                        | 4                                                            | =G00501                                                                   | 36.D                                                                          |                                                                                |
|                                                          |                                  |      | Compound                                                                                                                                                                     | 1                                                                                        | 2                                                                             | 3                                                                                   | 4                                                                             | 5                                                            | 6                                                                         | Avg                                                                           | %RSD                                                                           |
|                                                          | 1)<br>2)<br>3)<br>4)             | P    | Fluorobenzene Dichlorodifluorome Chloromethane Vinyl Chloride Bromomethane Quadratic Response Rat                                                                            | t 0.277<br>0.515<br>0.331<br>0.214<br>regr.,                                             | 0.335<br>0.554<br>0.389<br>0.215<br>Force                                     | 0.340<br>0.553<br>0.345<br>0.179                                                    | 0.298<br>0.473<br>0.307<br>0.133                                              | 0.29<br>0.47<br>0.30<br>0.11<br>Coeff                        | 75 0.500<br>07 0.334<br>.4 0.110<br>ficient                               | 0.311<br>0.512<br>0.335<br>0.161<br>= 0.98                                    | 7.93<br>7.01<br>9.07<br>29.97                                                  |
| (                                                        | 6)                               |      | Chloroethane<br>Linear re<br>Response Rat                                                                                                                                    | gr., Fo                                                                                  | rce(0,                                                                        | 0)                                                                                  | - Coe                                                                         | ffici                                                        | 8 0.124<br>ent =                                                          | 0.152<br>0.9919                                                               | 16.56                                                                          |
| -                                                        | 7)                               |      | Trichlorofluoromet Linear re Response Rat                                                                                                                                    | gr., Fo                                                                                  | rce(0,                                                                        | 0)                                                                                  | - Coe                                                                         | ffici                                                        | 1 0.295<br>ent =                                                          | 0.329<br>0.9973                                                               | 10.46                                                                          |
| Ç                                                        | 2)<br>3)<br>1)                   | C    | Ethyl Ether 1,2-Dichlorotriflu 1,1-Dichloroethene Freon 113 Carbon Disulfide Iodomethane Allyl chloride Methylene Chloride Linear rec Response Rate                          | 0.429<br>0.606<br>0.319<br>1.009<br>0.661<br>0.728<br>1.582<br>gr., Fo                   | 0.481<br>0.649<br>0.331<br>1.034<br>0.733<br>0.805<br>0.895<br>rce(0,         | 0.469<br>0.641<br>0.320<br>1.064<br>0.723<br>0.810<br>0.716                         | 0.412<br>0.546<br>0.273<br>0.931<br>0.674<br>0.736<br>0.631                   | 0.39<br>0.54<br>0.26<br>0.91<br>0.66<br>0.74                 | 0 0.551<br>7 0.274<br>8 0.959<br>5 0.686<br>8 0.769<br>4 0.625            | 0.431<br>0.589<br>0.297<br>0.986<br>0.690<br>0.766<br>0.844                   | 10.54<br>8.32<br>8.43<br>9.71<br>5.98<br>4.40<br>4.53<br>44.68                 |
| 16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25 | 7)<br>3)<br>3)<br>3)<br>1)<br>2) | P    | Acetone Methyl acetate trans-1,2-Dichloroe Hexane Methyl Tert Butyl H Acetonitrile Di-isopropyl ether Chloroprene 1,1-Dichloroethane Acrylonitrile Linear rec Response Ratio | 0.315<br>0.616<br>0.358<br>0.829<br>0.029<br>1.485<br>0.594<br>0.676<br>0.085<br>gr., Fo | 0.394<br>0.641<br>0.399<br>0.968<br>0.029<br>1.656<br>0.644<br>0.720<br>0.116 | 0.361<br>0.647<br>0.369<br>0.916<br>0.033<br>1.598<br>0.632<br>0.708<br>0.122<br>0) | 0.361<br>0.570<br>0.316<br>0.917<br>0.035<br>1.556<br>0.568<br>0.647<br>0.124 | 0.34<br>0.57<br>0.31<br>0.90<br>0.03<br>1.56<br>0.58<br>0.65 | 0 0.311<br>6 0.905<br>1 0.031<br>0 1.551<br>1 0.592<br>2 0.657<br>0 0.125 | 0.354<br>0.604<br>0.344<br>0.907<br>0.031<br>1.568<br>0.602<br>0.677<br>0.117 | 6.01<br>7.24<br>5.81<br>10.75<br>4.94<br>7.89<br>3.62<br>4.93<br>4.56<br>13.89 |
| 26<br>27<br>28<br>29<br>30<br>31                         | )                                | -    | ETBE Vinyl acetate cis-1,2-Dichloroeth 2,2-Dichloropropane Bromochloromethane Cyclohexane                                                                                    | 0.502<br>0.335<br>0.340<br>0.193                                                         | 0.500<br>0.376<br>0.340<br>0.240                                              | 0.555<br>0.373<br>0.326<br>0.234                                                    | 0.564<br>0.340<br>0.295<br>0.226                                              | 0.58<br>0.34<br>0.31<br>0.22                                 | 3 0.319                                                                   | 0.541<br>0.352<br>0.322<br>0.223                                              | 5.44<br>6.20<br>4.96<br>5.35<br>7.55<br>9.39                                   |



#### **Initial Calibration Summary**

Page 2 of 3 Job Number: F57525 Sample: VG1901-ICC1901 TETRSCAI Tetra Tech NUS Account: Lab FileID: G0050136.D Project: Sigsbee Marina: NAS Key West, FL 32) C Chloroform 0.644 0.709 0.698 0.638 0.638 0.644 0.662 4.93 33) Ethyl acetate 0.410 0.432 0.434 0.448 0.453 0.425 0.434 3.65 34) Tetrahydrofuran 0.182 0.144 0.131 0.139 0.135 0.133 0.144 13.32 ---- Linear regr., Force (0,0) ---- Coefficient = 0.9994Response Ratio = 0.00000 + 0.13424 \*ADibromofluoromethan 0.337 0.340 0.322 0.338 0.335 0.318 0.331 35) S 2.79 Carbon Tetrachlorid 0.458 0.485 0.531 0.413 0.416 0.422 0.454 36) 10.34 37) 1,1,1-Trichloroetha 0.456 0.516 0.500 0.456 0.464 0.471 0.477 5.32 38) 2-Butanone 0.239 0.269 0.251 0.254 0.265 0.251 0.255 4.16 39) 1,1-Dichloropropene 0.485 0.513 0.505 0.450 0.459 0.463 0.479 5.42 40) Propionitrile 0.045 0.053 0.050 0.049 0.048 0.044 0.048 6.91 41) Methacrylonitrile 0.334 0.379 0.365 0.348 0.336 0.312 0.346 6.93 42) Benzene 1.186 1.293 1.232 1.092 1.087 1.051 1.157 8.23 43) TAME 0.768 0.902 0.831 0.791 0.763 0.737 0.799 44) S 1,2-Dichloroethane- 0.415 0.433 0.426 0.406 0.411 0.404 0.416 2.73 45) 1,2-Dichloroethane 0.532 0.614 0.605 0.592 0.589 0.576 0.585 46) Trichloroethene 0.370 0.400 0.383 0.327 0.332 0.331 0.357 8.77 47) Methylcyclohexane 0.460 0.493 0.477 0.402 0.402 0.396 0.438 9.90 48) 0.205 0.267 0.260 0.252 0.253 0.252 0.248 Dibromomethane 8.84 49) C 1,2-Dichloropropane 0.386 0.418 0.408 0.381 0.375 0.372 0.390 4.81 50) Bromodichloromethan 0.468 0.550 0.554 0.518 0.527 0.529 0.525 5.88 51) Methyl methacrylate 0.418 0.497 0.490 0.474 0.496 0.486 0.477 6.31 52) 2-Chloroethyl vinyl 0.094 0.125 0.133 0.138 0.145 0.146 0.130 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9995Response Ratio = 0.00000 + 0.14400 \*A53) cis-1,3-Dichloropro 0.487 0.594 0.598 0.564 0.575 0.572 0.565 7.16 54) I Chlorobenzene-d5 -----ISTD-----55) S Toluene-d8 1.254 1.307 1.350 1.420 1.491 1.514 1.390 7.44 56) C Toluene 1.658 1.689 1.708 1.596 1.705 1.723 1.680 2.79 57) 2-Nitropropane 0.168 0.170 0.176 0.187 0.201 0.204 0.184 8.43 4-Methyl-2-pentanon 0.576 0.675 0.695 0.697 0.735 0.718 0.683 58) 8.23 trans-1,3-Dichlorop 0.477 0.653 0.683 0.673 0.715 0.722 0.654 59) 13.82 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9991 Response Ratio = 0.00000 + 0.71155 \*A60) Tetrachloroethene 0.535 0.606 0.619 0.572 0.587 0.596 0.586 5.09 61) Ethyl methacrylate 0.493 0.597 0.649 0.673 0.721 0.735 0.645 13.91 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9986Response Ratio = 0.00000 + 0.71900 \*A62) 1,1,2-Trichloroetha 0.317 0.377 0.375 0.382 0.399 0.409 0.377 Dibromochloromethan 0.416 0.538 0.565 0.587 0.626 0.632 0.560 63) 14.15 1,3-Dichloropropane 0.635 0.713 0.739 0.747 0.788 0.809 0.738 64) 8.30 65) 1,2-Dibromoethane 0.344 0.450 0.454 0.469 0.506 0.514 0.456 13.40 ---- Linear regr., Force(0,0) ---- Coefficient = 0.9984Response Ratio = 0.00000 + 0.50325 \*A66) 2-hexanone 0.411 0.495 0.505 0.519 0.553 0.545 0.505 67) 1-Chlorohexane 0.530 0.575 0.573 0.503 0.557 0.569 0.551 68) C Ethylbenzene 1.628 1.794 1.837 1.681 1.758 1.814 1.752 4.66 69) P Chlorobenzene 0.887 1.042 1.072 0.995 1.057 1.067 1.020 70) 1,1,1,2-Tetrachloro 0.340 0.439 0.468 0.448 0.470 0.492 0.443 71) m, p-Xylene 1.390 1.538 1.529 1.354 1.400 1.405 1.436 72) o-Xylene 1.334 1.587 1.610 1.471 1.548 1.612 1.527 7.09 73) Styrene 0.921 1.093 1.098 1.054 1.120 1.171 1.076 7.91 74) P Bromoform 0.356 0.452 0.484 0.509 0.544 0.558 0.484

---- Linear regr., Force(0,0) ---- Coefficient =



15.22

# Initial Calibration Summary Job Number: F57525 Account: TETRSCAI Tetra Tech NUS Project: Sigsbee Marina; NAS Key West, FL

APP9-GS.M

VG1901-ICC1901 G0050136.D

Page 3 of 3

Sample: Lab FileID:

|                                                                                                                                   | Response Ratio = 0.00000 + 0.54422 *A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75)                                                                                                                               | Isopropylbenzene 1.285 1.521 1.546 1.412 1.485 1.538 1.465 6.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 76) I<br>.77) S<br>78)<br>79)<br>80)<br>81) P<br>82)<br>83)<br>84)<br>85)<br>86)<br>87)<br>88)<br>89)<br>90)<br>91)<br>92)<br>93) | 1,4-Dichlorobenzene-d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 95)<br>96)<br>97)<br>98)<br>99)<br>100)<br>101)                                                                                   | n-Butylbenzene 1.330 1.453 1.617 1.293 1.450 1.484 1.438 8.05 Benzyl Chloride 0.243 0.274 0.296 0.292 0.306 0.302 0.285 8.29 1,2-Dichlorobenzene 1.354 1.550 1.523 1.431 1.473 1.480 1.469 4.76 1,2-Dibromo-3-Chlor 0.185 0.218 0.193 0.196 0.201 0.205 0.199 5.71 Hexachlorobutadiene 1.065 1.125 1.105 0.987 0.941 0.989 1.035 7.12 1,2,4-Trichlorobenz 0.938 1.046 1.121 1.068 1.065 1.130 1.061 6.49 Naphthalene 1.384 1.671 1.783 1.814 1.811 1.892 1.726 10.54 1,2,3-Trichlorobenz 0.784 0.979 0.981 0.925 0.915 0.941 0.921 7.84 |
| 103) I<br>104)                                                                                                                    | Tert Butyl Alcohol-dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 105)                                                                                                                              | Acrolein 0.762 1.172 1.142 1.097 1.218 1.227 1.103 15.75 Linear regr., Force(0,0) Coefficient = 0.9975 Response Ratio = 0.00000 + 1.20387 *A                                                                                                                                                                                                                                                                                                                                                                                            |
| 106)                                                                                                                              | Tert Butyl Alcohol 1.296 1.533 1.415 1.374 1.546 1.549 1.452 7.31 Isobutyl alcohol 0.437 0.549 0.506 0.495 0.576 0.796 0.560 22.34 Quadratic regr., Force(0,0) Coefficient = 0.9908 Response Ratio = 0.00000 + 0.22869 *A + 0.03396 *A^2                                                                                                                                                                                                                                                                                                |
| 108)<br>109)                                                                                                                      | Tert Amyl Alcohol 1.135 1.377 1.220 1.213 1.379 1.309 1.272 7.77 1,4-Dioxane 0.113 0.097 0.099 0.124 0.123 0.111 11.37                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (#) = 0                                                                                                                           | ut of Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Tue May 06 16:50:47 2008



## Instrument Performance Check (BFB) Job Number: F57525

Account:

Project:

**TETRSCAI Tetra Tech NUS** Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: VG1912-BFB G0050451.D

Injection Date: 05/19/08

Injection Time: 09:34

Instrument ID: GCMSG

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative Abundance | Pass/Fail |
|-----|------------------------------------|------------------|----------------------|-----------|
| 50  | 15.0 - 40.0% of mass 95            | 38724            | 21.0                 | Pass      |
| 75  | 30.0 - 60.0% of mass 95            | 83913            | 45.5                 | Pass      |
| 95  | Base peak, 100% relative abundance | 184407           | 100.0                | Pass      |
| 96  | 5.0 - 9.0% of mass 95              | 12820            | 7.0                  | Pass      |
| 173 | Less than 2.0% of mass 174         | 0                | 0.0 (0.0) a          | Pass      |
| 174 | 50.0 - 100.0% of mass 95           | 157856           | 85.6                 | Pass      |
| 175 | 5.0 - 9.0% of mass 174             | 12171            | 6.6 (7.7) a          | Pass      |
| 176 | 95.0 - 101.0% of mass 174          | 154304           | 83.7 (97.7) a        | Pass      |
| 177 | 5.0 - 9.0% of mass 176             | 10256            | 5.6 (6.6) b          | Pass      |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab        | Date     | Time     | Hours  | Client                                     |
|---------------|------------|----------|----------|--------|--------------------------------------------|
| Sample ID     | File ID    | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|               |            |          |          |        |                                            |
| VG1912-CC1901 | G0050452.D | 05/19/08 | 09:54    | 00:20  | Continuing cal 4                           |
| VG1912-BS     | G0050453.D | 05/19/08 | 10:39    | 01:05  | Blank Spike                                |
| VG1912-MB     | G0050454.D | 05/19/08 | 11:04    | 01:30  | Method Blank                               |
| ZZZZZZ        | G0050456.D | 05/19/08 | 11:55    | 02:21  | (unrelated sample)                         |
| ZZZZZZ        | G0050457.D | 05/19/08 | 12:20    | 02:46  | (unrelated sample)                         |
| ZZZZZZ        | G0050458.D | 05/19/08 | 12:45    | 03:11  | (unrelated sample)                         |
| ZZZZZZ        | G0050459.D | 05/19/08 | 13:11    | 03:37  | (unrelated sample)                         |
| ZZZZZZ        | G0050460.D | 05/19/08 | 13:36    | 04:02  | (unrelated sample)                         |
| ZZZZZZ        | G0050461.D | 05/19/08 | 14:02    | 04:28  | (unrelated sample)                         |
| F57493-14     | G0050462.D | 05/19/08 | 14:27    | 04:53  | (used for QC only; not part of job F57525) |
| ZZZZZZ        | G0050464.D | 05/19/08 | 15:24    | 05:50  | (unrelated sample)                         |
| F57525-2      | G0050465.D | 05/19/08 | 15:49    | 06:15  | KWSM-SO-DRUM-2                             |
| F57525-4      | G0050466.D | 05/19/08 | 16:15    | 06:41  | KWSM-SO-DRUM-4                             |
| ZZZZZZ        | G0050467.D | 05/19/08 | 16:41    | 07:07  | (unrelated sample)                         |
| F57493-14MS   | G0050468.D | 05/19/08 | 17:06    | 07:32  | Matrix Spike                               |
| F57493-14MSD  | G0050469.D | 05/19/08 | 17:32    | 07:58  | Matrix Spike Duplicate                     |
| ZZZZZZ        | G0050470.D | 05/19/08 | 17:57    | 08:23  | (unrelated sample)                         |
| ZZZZZZ        | G0050471.D | 05/19/08 | 18:23    | 08:49  | (unrelated sample)                         |
| ZZZZZZ        | G0050472.D | 05/19/08 | 18:48    | 09:14  | (unrelated sample)                         |
| ZZZZZZ        | G0050473.D | 05/19/08 | 19:13    | 09:39  | (unrelated sample)                         |
| ZZZZZZ        | G0050474.D | 05/19/08 | 19:39    | 10:05  | (unrelated sample)                         |
| ZZZZZZ        | G0050475.D | 05/19/08 | 20:04    | 10:30  | (unrelated sample)                         |
| ZZZZZZ        | G0050476.D | 05/19/08 | 20:30    | 10:56  | (unrelated sample)                         |
| ZZZZZZ        | G0050477.D | 05/19/08 | 20:55    | 11:21  | (unrelated sample)                         |
|               |            |          |          |        | •                                          |

<sup>(</sup>b) Value is % of mass 176

## **Continuing Calibration Summary**

Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Sample: Lab FileID:

VG1912-CC1901 G0050452.D

Project: Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : G:\HPCHEM\1\DATA\051908\G0050452.D

Vial: 1 Operator: StevenH

Acq On : 19 May 2008 9:54 am : cc1901-4 Sample

Inst : MSVOA1

Misc : ms9414,vg1912,5.00,,,, Multiplr: 1.00

MS Integration Params: small.p

Method : C:\MSDCHEM\1\METHODS\APP9-GS.M (RTE Integrator)

: SW-846 Method 5035A/8260B Last Update : Tue May 06 12:42:40 2008 Response via: Multiple Level Calibration

Min. RRF : 0.001 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area: 200%

| ·    | Compound                  | AvgRF   | CCRF    | %Dev   | Area% | Dev(m | in)R.T. |
|------|---------------------------|---------|---------|--------|-------|-------|---------|
| 1 I  | Fluorobenzene             | 1.000   | 1.000   | 0.0    | 112   | 0.00  | 11.25   |
| 2    | Dichlorodifluoromethane   | 0.311   | 0.240   | 22.8#  | 90    | 0.00  | 4.26    |
| 3 P  | Chloromethane             | 0.512   | 0.442   | 13.7   | 105   | -0.02 | 4.67    |
| 4 C  | Vinyl Chloride            | 0.335   | 0.314   | 6.3    | 115   | 0.00  | 4.88    |
|      | ·                         | Amount  |         | %Drift |       |       |         |
| 5    | Bromomethane              | 100.000 |         | 22.0#  | 95    | -0.02 | 5.53    |
| 6    | Chloroethane              | 100.000 | 109.418 | -9.4   | 114   | -0.02 | 5.79    |
| 7    | Trichlorofluoromethane    | 100.000 | 107.514 | -7.5   | 117   | 0.00  | 6.04    |
|      |                           |         | CCRF    | %Dev   |       |       |         |
| 8    | Ethyl Ether               | 0.258   | 0.246   | 4.7    | 107   |       | 6.53    |
| 9    | 1,2-Dichlorotrifluoroetha |         | 0.430   | 0.2    | 117   | -0.03 | 6.85    |
| 10 C | 1,1-Dichloroethene        | 0.589   | 0.567   | 3.7    |       | 0.03  | 6.92    |
| 11   | Freon 113                 | 0.297   | 0.300   | -1.0   | 123   | -0.03 | 6.96    |
| 12   | Carbon Disulfide          | 0.986   | 0.941   | 4.6    | 113   | -0.02 | 7.02    |
| 13   | Iodomethane               | 0.690   | 0.664   | 3.8    | 111   | -0.03 | 7.20    |
| 14   | Allyl chloride            | 0.766   | 0.701   | 8.5    | 107   | 0.00  | 7.65    |
|      |                           |         |         | %Drift |       |       |         |
| 15   | Methylene Chloride        | 100.000 | 94.909  | 5.1    | 106   | -0.02 | 7.82    |
|      |                           | AvgRF   | CCRF    | %Dev   |       |       |         |
| 16   | Acetone                   | 0.178   | 0.165   | 7.3    | 108   | 0.00  | 7.88    |
| 17   | Methyl acetate            | 0.354   | 0.311   | 12.1   | 97    | 0.00  | 8.02    |
| 18   | trans-1,2-Dichloroethene  | 0.604   | 0.574   | 5.0    | 113   | 0.00  | 8.05    |
| 19   | Hexane                    | 0.344   | 0.355   | -3.2   | 126   | -0.02 | 8.12    |
| 20   | Methyl Tert Butyl Ether   | 0.907   | 0.879   | 3.1    | 108   | 0.00  | 8.16    |
| 21   | Acetonitrile              | 0.031   | 0.038   | -22.6# | 120   | -0.02 | 8.57    |
| 22   | Di-isopropyl ether        | 1.568   | 1.464   | 6.6    | 106   | 0.00  | 8.65    |
| 23   | Chloroprene               | 0.602   | 0.573   | 4.8    | 113   | 0.00  | 8.89    |
| 24 P | 1,1-Dichloroethane        | 0.677   | 0.652   | 3.7    | 113   | 0.00  | 8.94    |
|      |                           |         |         | %Drift |       |       |         |
| 25   | Acrylonitrile             | 500.000 | 464.896 | 7.0    | 106   | 0.00  | 9.01    |
|      |                           |         | CCRF    | %Dev   |       |       |         |
| 26   | ETBE                      | 1.213   | 1.188   | 2.1    | 109   | 0.00  | 9.16    |
| 27   | Vinyl acetate             | 0.541   | 0.283   | 47.7#  |       | 0.00  | 9.20    |
| 28   | cis-1,2-Dichloroethene    | 0.352   | 0.335   | 4.8    | 111   | 0.00  | 9.67    |
| 29   | 2,2-Dichloropropane       | 0.322   | 0.343   | -6.5   | 131   | 0.00  | 9.82    |
| 30   | Bromochloromethane        | 0.223   | 0.220.  | 1.3    | 109   | 0.00  | 9.93    |



## **Continuing Calibration Summary**

| Conting Job Numb Account: Project: | TETRSCAI Tetra Tech NUS                                        |              |        | Sample:<br>Lab FileID: | VG1912-CC19<br>G0050452.D | Page 2 of 3 |
|------------------------------------|----------------------------------------------------------------|--------------|--------|------------------------|---------------------------|-------------|
| 31                                 | Cyclohexane                                                    | 0.647        | 0.616  | 4.8                    | 116 0.00                  | 9.96        |
| 32 C                               | Chloroform                                                     | 0.662        | 0.631  | 4.7                    | 111, 0.00                 | 9.98        |
| 33                                 | Ethyl acetate                                                  | 0.434        | 0.418  | 3.7                    | 105 0.00                  | 10.07       |
|                                    |                                                                | Amount       | Calc.  | %Drift                 |                           |             |
| 34                                 | Tetrahydrofuran                                                | 100.000      |        |                        |                           |             |
|                                    |                                                                | AvgRF        | CCRF   | %Dev                   |                           |             |
| 35 S                               | Dibromofluoromethane                                           | 0.331        | 0.344  | -3.9                   | 115 0.00                  | 10.23       |
| 36                                 | Carbon Tetrachloride                                           | 0.454        | 0.426  | 6.2                    | 116 0.00                  | 10.22       |
| 37                                 | 1,1,1-Trichloroethane                                          | 0.477        | 0.477  | 0.0                    | 117 -0.02                 | 10.30       |
| 38.                                | 2-Butanone                                                     | 0.255        | 0.243  | 4.7                    | 107 0.00                  | 10.37       |
| 39                                 | 1,1-Dichloropropene                                            |              | 0.456  |                        | 114 0.00                  | 10.45       |
| 40                                 | Propionitrile                                                  | 0.048        | 0.046  |                        | 106 0.00                  | 10.77       |
| 41                                 | Methacrylonitrile                                              | 0.346        | 0.325  |                        | 105 0.00                  | 10.80       |
| 42                                 | Benzene                                                        | 1.157        | 1.078  | 6.8                    | 111 0.00                  | 10.76       |
| 43                                 | TAME                                                           | 0.799        | 0.759  |                        | 108 0.00                  | 10.81       |
| 44 S                               | 1,2-Dichloroethane-d4                                          | 0.416        | 0.441  |                        | 122 0.00                  | 10.92       |
| 45                                 | 1,2-Dichloroethane                                             | 0.585        | 0.554  |                        | 105 0.00                  | 11.01       |
| 46                                 | Trichloroethene                                                | 0.357        | 0.333  |                        | 114 0.00                  | 11.45       |
| 47                                 | Methylcyclohexane                                              | 0.438        | 0.426  |                        | 119 0.00                  | 11.46       |
|                                    | Dibromomethane                                                 | 0.248        | 0.236  |                        | 105 0.00                  | 11.97       |
| 49 C                               | 1,2-Dichloropropane                                            | 0.390        | 0.360  |                        | 106 0.00                  | 12.08       |
| 50                                 | Bromodichloromethane                                           | 0.525        | 0.501  |                        | 109 0.00                  | 12.12       |
| 51                                 | Methyl methacrylate                                            | 0.477        | 0.447  |                        | 106 0.00                  | 12.22       |
|                                    |                                                                | 7            | Cala   | 0 D : E+               |                           |             |
| 52                                 | 2-Chloroethyl vinyl ether                                      |              |        |                        | 164 0.00                  | 12.71       |
|                                    |                                                                | AvaRF        | CCRF   | %Dev                   |                           |             |
| 53                                 | cis-1,3-Dichloropropene                                        | 0.565        | 0.553  |                        | 110 0.00                  | 12.84       |
| 54 I                               | Chlorobenzene-d5                                               | 1.000        | 1.000  | 0.0                    | 112 0.00                  | 14.82       |
| 55 S                               | Toluene-d8                                                     | 1.390        | 1.376  |                        | 109 0.00                  | 13.06       |
| 56 C                               | Toluene                                                        | 1.680        | 1.584  |                        | 111 0.00                  | 13.12       |
| 57                                 | 2-Nitropropane                                                 |              | 0.180  | 2.2                    | 108 0.00                  | 13.39       |
| 58                                 | 4-Methyl-2-pentanone                                           | 0.683        | 0.684  | -0.1                   | 110 0.00                  | 13.49       |
|                                    |                                                                | 7 m o 11 n + | Calc.  | %Drift                 |                           |             |
| 59                                 | trans-1,3-Dichloropropene                                      |              | 89.503 | 10.5                   | 106 0.00                  | 13.56       |
|                                    |                                                                |              |        |                        |                           |             |
|                                    |                                                                |              | CCRF   |                        |                           |             |
| 60                                 | Tetrachloroethene                                              | 0.586        | 0.570  | 2.7                    | 112 0.00                  | 13.58       |
|                                    |                                                                | Amount       | Calc.  | %Drift                 |                           |             |
| 61                                 | Ethyl methacrylate                                             |              | 88.109 | 11.9                   | 106 0.00                  | 13.65       |
|                                    |                                                                |              |        |                        |                           |             |
|                                    |                                                                | AvgRF        | CCRF   |                        |                           |             |
| 62                                 | 1,1,2-Trichloroethane                                          | 0.377        | 0.359  |                        | 105 0.00                  | 13.76       |
| 63                                 | 1,1,2-Trichloroethane Dibromochloromethane 1,3-Dichloropropane | 0.560        | 0.536  |                        | 103 0.00                  |             |
| 64                                 | 1,3-Dichloropropane                                            | 0.738        | 0.723  | 2.0                    | 109 0.00                  | 14.08       |
|                                    | ·                                                              |              |        | %Drift                 |                           |             |
| 65                                 | 1,2-Dibromoethane                                              | 100.000      | 90.200 | 9.8                    | 109 0.00                  | 14.30       |
|                                    |                                                                | AvgRF        | CCRF   | %Dev                   |                           |             |
| 66                                 | 2-hexanone                                                     | 0.505        | 0.515  | -2.0                   | 111 0.00                  | 14.41       |
| 67                                 | 1-Chlorohexane                                                 | 0.551        | 0.553  | -0.4                   | 123 0.00                  | 14.73       |
| 68 C                               | Ethylbenzene                                                   | 1.752        | 1.696  | 3.2                    | 113 0.00                  | 14.81       |
| 69 P                               | Chlorobenzene                                                  | 1.020        | 0.989  | 3.0                    | 112 0.00                  | 14.84       |
|                                    | •                                                              |              |        |                        |                           |             |



| ccount:<br>roject: | per: F57525<br>TETRSCAI Tetra Tech NUS<br>Sigsbee Marina; NAS Key Wes | US             |                | Sample:<br>Lab FileID: | VG<br>G00  | Page 3 of 3  |                |
|--------------------|-----------------------------------------------------------------------|----------------|----------------|------------------------|------------|--------------|----------------|
| 70                 | 1,1,1,2-Tetrachloroethane                                             | 0.443          | 0.440          | 0.7                    | 110        | 0.00         | 14.89          |
| 71                 | m,p-Xylene                                                            | 1.436          | 1.390          | 3.2                    | 115        | 0.00         | 14.96          |
| 72                 | o-Xylene                                                              | 1.527          | 1.474          | 3.5                    | 112        | 0.00         | 15.42          |
| 73                 | Styrene                                                               | 1.076          | 1.054          | 2.0                    | 112        | 0.00.        | 15.47          |
|                    |                                                                       |                |                | %Drift                 |            |              |                |
| 74 P               | Bromoform                                                             | 100.000        | 85.530         | 14.5                   | 103        | 0.00         | 15.56          |
|                    |                                                                       |                | CCRF           | %Dev                   |            |              |                |
| 75                 | Isopropylbenzene                                                      | 1.465          | 1.443          | 1.5                    | 115        | 0.00         | 15.72          |
| 76 I               | 1,4-Dichlorobenzene-d4                                                | 1.000          | 1.000          | 0,.0                   | 111        | 0.00         | 17.09          |
| 77 S               | 4-Bromofluorobenzene                                                  | 1.002          | 0.995          | 0.7                    | 110        | 0.00         | 16.04          |
| 78                 | cis-1,4-Dichloro-2-butene                                             |                | 0.373          | -1.1                   | 113        | 0.00         | 16.07          |
| 79                 | n-Propylbenzene                                                       | 3.615          | 3.540          | 2.1                    | 116        | 0.00         | 16.12          |
| 0                  | Bromobenzene                                                          | 0.921          | 0.893          | 3.0                    | 111        | 0.00         | 16.17          |
| 1 P                | 1,1,2,2-Tetrachloroethane                                             |                | 0.931          | 1.0                    | 108        | 0.00         | 16.19          |
| 2                  | 1,3,5-Trimethylbenzene                                                | 2.480          | 2.439          | 1.7                    | 115        | 0.00         | 16.28          |
| 3                  | 2-Chlorotoluene                                                       | 2.657          | 2.583          | 2.8                    | 113        | 0.00         | 16.32          |
| 4                  | trans-1,4-Dichloro-2-Bute                                             |                | 0.155          | -3.3                   | 113        | 0.00         | 16.36          |
| 5                  | 1,2,3-Trichloropropane                                                | 0.250          | 0.249          | 0.4                    | 111        | 0.00         | 16.35          |
| 6                  | Cyclohexanone                                                         | 0.032          | 0.034          | -6.3                   | 121        | 0.00         | 16.44          |
| 7                  | 4-Chlorotoluene                                                       |                | 2.376          | 1.9                    | 114        | 0.00         | 16.47          |
| 8                  | tert-Butylbenzene                                                     | 1.707          | 1.691          | 0.9                    | 118        | 0.00         | 16.60          |
| 9                  | 1,2,4-Trimethylbenzene                                                | 2.499          | 2.391          | 4.3                    | 112        | 0.00         | 16.66          |
| 0                  | Pentachloroethane                                                     | 0.584          | 0.576          | 1.4                    | 112        | 0.00         | 16.67          |
| 1                  | sec-Butylbenzene                                                      | 3.059          | 3.020          | 1.3                    | 118        | 0.00         | 16.75          |
| 2                  | 4-Isopropyltoluene                                                    | 2.372          | 2.354          | 0.8                    | 117        | 0.00         | 16.86          |
| 3                  | 1,3-Dichlorobenzene                                                   |                | 1.540          | -0.1                   | 115        | 0.00         | 17.03          |
| 4                  | 1,4-Dichlorobenzene                                                   | 1.525          | 1.500          | 1.6                    | 112        | 0.00         | 17.11          |
| 5                  | n-Butylbenzene                                                        | 1.438          | 1.410          | 1.9                    | 121        | 0.00         | 17.26          |
| 6                  | Benzyl Chloride                                                       | 0.285          | 0.298          | -4.6                   | 113        | 0.00         | 17.31          |
| 7                  | 1,2-Dichlorobenzene                                                   | 1.469          | 1.430          | 2.7                    | 111        | 0.00         | 17.51          |
| 8                  | 1,2-Dibromo-3-Chloropropa                                             |                | 0.186          | 6.5                    | 106        | 0.00         | 18.25          |
| 9                  | Hexachlorobutadiene                                                   | 1.035          | 0.973          | 6.0                    | 110        | 0.00         | 18.82          |
| .0                 | 1,2,4-Trichlorobenzene                                                | 1.061          | 1.108          | -4.4                   | 115        | 0.00         | 18.91          |
| 1<br>2             | Naphthalene<br>1,2,3-Trichlorobenzene                                 | 1.726<br>0.921 | 1.802<br>0.946 | -4.4 $-2.7$            | 110<br>114 | 0.00         | 19.26<br>19.46 |
| 3 I                | Tert Butyl Alcohol-d10                                                | 1.000          | 1.000          |                        | 129        | -0.02        |                |
|                    |                                                                       | Amount         | Calc.          | %Drift                 |            |              |                |
| 4                  |                                                                       | 2000.000       |                |                        |            | 0.00         | 6.74           |
| 5                  | Acrolein                                                              |                |                | 60.8#                  |            |              |                |
|                    |                                                                       | AvgRF          | CCRF           | %Dev                   |            |              |                |
| 6                  | Tert Butyl Alcohol                                                    | 1.452          | 1.257          | 13.4                   | 118        | 0.00         | 8.24           |
| 7                  | Isobutyl alcohol                                                      | Amount         | Calc.          | %Drift<br>9.3          | <br>11     | <br>2 0.00   |                |
|                    | _                                                                     |                |                |                        |            |              |                |
|                    | Tert Amyl Alcohol                                                     | AvgRF          | CCRF           | %Dev                   |            |              |                |
| 8<br>9             | 1.4-Dioxane                                                           | 1.2/2<br>0.111 | 0.088<br>1.088 | 14.5<br>20.7#          | 115<br>115 | 0.00         | 11.00<br>12.35 |
|                    | 1,4-Dioxane                                                           |                |                |                        |            | <del>-</del> |                |



Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: VJ2474-BFB J038597.D

Injection Date: 05/27/08

Instrument ID: GCMSI

Injection Time: 09:44

Raw % Relative m/e Ion Abundance Criteria Abundance Abundance Pass/Fail 50 15.0 - 40.0% of mass 95 23592 20.0 Pass 75 30.0 - 60.0% of mass 95 53045 45.0 **Pass** 95 Base peak, 100% relative abundance 117981 100.0 Pass 96 5.0 - 9.0% of mass 95 8074 6.8 Pass 173 Less than 2.0% of mass 174 226 0.19  $(0.23)^{a}$ Pass 174 50.0 - 100.0% of mass 95 97800 82.9 Pass 175 5.0 - 9.0% of mass 174 6653 5.6  $(6.8)^{a}$ Pass 95.0 - 101.0% of mass 174 176 96325 81.6  $(98.5)^{a}$ Pass (7.2) b 177 5.0 - 9.0% of mass 176 6895 5.8 Pass

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab            | Lab       | Date     | Time     | Hours  | Client                                     |
|----------------|-----------|----------|----------|--------|--------------------------------------------|
| Sample ID      | File ID   | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|                |           |          |          |        |                                            |
| VJ2474-IC2474  | J038598.D | 05/27/08 | 10:11    | 00:27  | Initial cal 1                              |
| VJ2474-IC2474  | J038599.D | 05/27/08 | 10:37    | 00:53  | Initial cal 2                              |
| VJ2474-IC2474  | J038600.D | 05/27/08 | 11:06    | 01:22  | Initial cal 3                              |
| VJ2474-ICC2474 | J038601.D | 05/27/08 | 11:33    | 01:49  | Initial cal 4                              |
| VJ2474-IC2474  | J038602.D | 05/27/08 | 12:04    | 02:20  | Initial cal 5                              |
| VJ2474-IC2474  | J038603.D | 05/27/08 | 12:31    | 02:47  | Initial cal 6                              |
| VJ2474-ICV2474 | J038604.D | 05/27/08 | 13:08    | 03:24  | Initial cal verification 4                 |
| VJ2474-BS      | J038605.D | 05/27/08 | 13:40    | 03:56  | Blank Spike                                |
| VJ2474-MB      | J038606.D | 05/27/08 | 14:31    | 04:47  | Method Blank                               |
| ZZZZZZ         | J038607.D | 05/27/08 | 14:55    | 05:11  | (unrelated sample)                         |
| ZZZZZZ         | J038608.D | 05/27/08 | 15:20    | 05:36  | (unrelated sample)                         |
| ZZZZZZ         | J038609.D | 05/27/08 | 15:44    | 06:00  | (unrelated sample)                         |
| ZZZZZZ         | J038610.D | 05/27/08 | 16:09    | 06:25  | ` (unrelated sample)                       |
| ZZZZZZ         | J038611.D | 05/27/08 | 16:33    | 06:49  | (unrelated sample)                         |
| F57603-4       | J038612.D | 05/27/08 | 16:58    | 07:14  | (used for QC only; not part of job F57525) |
| F57603-4MS     | J038613.D | 05/27/08 | 17:22    | 07:38  | Matrix Spike                               |
| F57603-4MSD    | J038614.D | 05/27/08 | 17:46    | 08:02  | Matrix Spike Duplicate                     |
| ZZZZZZ         | J038615.D | 05/27/08 | 18:13    | 08:29  | (unrelated sample)                         |
| ZZZZZZ         | J038616.D | 05/27/08 | 18:37    | 08:53  | (unrelated sample)                         |
| ZZZZZZ         | J038620.D | 05/27/08 | 20:15    | 10:31  | (unrelated sample)                         |
| ZZZZZZ         | J038621.D | 05/27/08 | 20:40    | 10:56  | (unrelated sample)                         |
| ZZZZZZ         | J038622.D | 05/27/08 | 21:04    | 11:20  | (unrelated sample)                         |
| ZZZZZZ         | J038623.D | 05/27/08 | 21:28    | 11:44  | (unrelated sample)                         |
|                |           |          |          |        | •                                          |

<sup>(</sup>a) Value is % of mass 174

<sup>(</sup>b) Value is % of mass 176

F57525

TETRSCAI Tetra Tech NUS

Sample: Lab FileID:

VJ2474-ICC2474 1038601.D

Account: Project:

Sigsbee Marina; NAS Key West, FL

Response Factor Report MSVOA6

: C:\MSDCHEM\1\METHODS\8260-JAPP9.M (RTE Integrator) Method

Title : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed May 28 13:22:02 2008 Response via : Initial Calibration

Calibration Files

=J038598.D 2 =J038599.D 3 =J038600.D =J038601.D

|    |   | Composind                     | 1       | 2       | 2      | 4      | Е       | c       | 7       | 9.D.C.I |
|----|---|-------------------------------|---------|---------|--------|--------|---------|---------|---------|---------|
|    |   | Compound                      | 1<br>   | 2       | 3      | 4<br>  | 5<br>   | 6<br>   | Avg<br> | RSI%    |
| 1) | I | Fluorobenzene                 |         |         |        | -ISTD- |         |         |         |         |
| 2) |   | Dichlorodifluoromet           | 0.158   | 0.184   | 0.187  | 0.179  | 0.178   | 0.171   | 0.176   | 5.83    |
| 3) | P | Chloromethane                 | 0.670   | 0.549   | 0.610  | 0.570  | 0.556   | 0.520   | 0.579   | 9.2     |
| 4) | С | Vinyl Chloride                | 0.496   | 0.468   | 0.534  | 0.521  | 0.509   | 0.485   | 0.502   | 4.8     |
| 5) |   | Bromomethane                  | 0.353   | 0.294   | 0.318  | 0.314  | 0.311   | 0.299   | 0.315   | 6.6     |
| 6) |   | Chloroethane                  | 0.309   | 0.325   | 0.310  | 0.294  | 0.301   | 0.283   | 0.304   | 4.7     |
| 7) |   | Trichlorofluorometh           | 0.337   | 0.416   | 0.478  | 0.401  | 0.483   | 0.431   | 0.424   | 12.7    |
| 8) |   | Ethyl Ether                   | 0.444   | 0.423   | 0.518  | 0.515  | 0.478   | 0.376   | 0.459   | 12.0    |
| 9) |   | 1,2-Dichlorotrifluo           | 0.496   | 0.514   | 0.580  | 0.558  | 0.554   | 0.495   | 0.533   | 6.7     |
| 0) | С | 1,1-Dichloroethene            | 0.459   | 0.570   | 0.647  | 0.608  | 0.615   | 0.563   | 0.577   | 11.3    |
| 1) |   | Freon 113                     | 0.457   | 0.329   | 0.401  | 0.375  | 0.384   | 0.363   | 0.385   | 11.0    |
| 2) |   | Carbon Disulfide              | 1.607   | 1.428   | 1.501  | 1.445  | 1.456   | 1.376   | 1.469   | 5.3     |
| 3) |   | Iodomethane                   | 0.489   | 0.628   | 0.712  | 0.707  | 0.743   | 0.731   | 0.668   | 14.4    |
| 4) |   | Allyl chloride                | 0.472   | 0.581   | 0.605  | 0.607  | 0.631   | 0.640   | 0.590   | 10.3    |
| 5) |   | Methylene Chloride            | 0.767   | 0.564   | 0.516  | 0.491  | 0.466   | 0.446   | 0.542   | 21.7    |
|    | • | Quadratic                     | regr.,  | Force   | (0,0)  |        | Coeffic | cient : | = 0.99  | 99      |
|    |   | Response Ratio                | 0.0 = c | 00000 - | + 0.52 | 249 *A | + -0.0  | 03856   | *A^2    |         |
| 6) |   | Acetone                       | 0.439   | 0.362   | 0.361  | 0.342  | 0.354   | 0.349   | 0.368   | 9.7     |
| 7) |   | Methyl acetate                | 0.055   | 0.051   | 0.048  | 0.050  | 0.050   | 0.052   | 0.051   | 4.5     |
| 8) |   | trans-1,2-Dichloroe           | 0.357   | 0.445   | 0.423  | 0.418  | 0.438   | 0.450   | 0.422   | 8.0     |
| 9) |   | Hexane                        | 0.281   | 0.326   | 0.300  | 0.298  | 0.304   | 0.309   | 0.303   | 4.8     |
| 0) |   | Methyl Tert Butyl E           | 0.708   | 0.780   | 0.757  | 0.755  | 0.753   | 0.780   | 0.756   | 3.4     |
| 1) |   | Acetonitrile                  | 0.028   | 0.028   | 0.025  | 0.024  | 0.024   | 0.023   | 0.025   | 8.0     |
| 2) |   | Di-isopropyl ether            | 1.086   | 1.203   | 1.197  | 1.181  | 1.200   | 1.200   | 1.178   | 3.8     |
| 3) |   | Chloroprene                   | 0.369   | 0.418   | 0.431  | 0.420  | 0.439   | 0.449   | 0.421   | 6.6     |
| 4) | P | 1,1-Dichloroethane            | 0.478   | 0.563   | 0.543  | 0.528  | 0.544   | 0.549   | 0.534   | 5.5     |
| 5) |   | Acrylonitrile                 | 0.118   | 0.120   | 0.127  | 0.126  | 0.121   | 0.121   | 0.122   | 2.8     |
| 6) |   | ETBE                          |         |         |        | 1.000  |         |         |         | 8.7     |
| 7) |   | Vinyl acetate                 |         |         |        | 0.788  |         |         |         | 8.8     |
| 8) |   | cis-1,2-Dichloroeth           |         |         |        |        |         |         |         | 6.4     |
| 9) |   | 2,2-Dichloropropane           |         |         |        |        |         |         |         | 9.3     |
| 0) |   | Bromochloromethane            |         |         |        | 0.172  |         |         |         | 8.8     |
| 1) |   | Cyclohexane                   |         |         |        | 0.572  |         |         |         | 10.4    |
| 2) | С | Chloroform                    |         |         |        | 0.478  |         |         |         | 5.1     |
| 3) |   | Ethyl acetate                 |         |         |        | 0.420  |         |         |         | 4.1     |
| 4) |   | Tetrahydrofuran               |         |         |        | 0.098  |         |         |         | 21.9    |
|    |   | Quadratic :<br>Response Ratio |         |         |        |        |         |         |         | 199     |
|    |   |                               |         |         |        |        |         |         |         |         |
| 5) | S | Dibromofluoromethan           |         |         |        |        |         |         |         | 3.9     |
| 6) |   | Carbon Tetrachlorid           |         |         |        |        |         |         |         | 8.7     |
| 7) |   | 1,1,1-Trichloroetha           |         |         |        |        |         |         |         | 4.8     |
| 8) |   | 2-Butanone                    |         |         |        | 0.176  |         |         |         | 2.6     |
| 9) |   | 1,1-Dichloropropene           |         |         |        |        |         |         |         | 9.5     |
| 0) |   | Propionitrile                 | 0.048   | 0.048   | U U 21 | 0 053  | 0.055   | 0.059   | 0 052   | 7.6     |

|                                                                                                                                                                                                                          | NUS<br>ey West, FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample:<br>Lab FileID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VJ2474-ICC2474<br>J038601.D                                                                                                                                                                                            |                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| 1,2-Dichloroethane Trichloroethene Methylcyclohexane Quadratic                                                                                                                                                           | 0.667 0.723 0<br>0.264 0.269 0<br>0.363 0.385 0<br>0.253 0.299 0<br>0.322 0.462 0<br>cegr., Force(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .240 1.2<br>.752 0.7<br>.276 0.2<br>.358 0.3<br>.295 0.2<br>.466 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 261 1.344 1<br>770 0.776 (287 0.255 (354 0.357 (299 0.322 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 (374 0.510 | 1.363 1.245<br>0.805 0.749<br>0.270 0.270<br>0.358 0.362<br>0.333 0.300<br>0.521 0.459 1<br>ient = 0.9998                                                                                                              | 5.91<br>9.54<br>6.47<br>3.99<br>3.16<br>9.15<br>5.50                                                 |
| Bromodichloromethan<br>Methyl methacrylate<br>2-Chloroethyl vinyl                                                                                                                                                        | 0.309 0.343 0<br>0.298 0.365 0<br>0.279 0.270 0<br>0.032 0.046 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .345 0.3<br>.367 0.3<br>.299 0.3<br>.066 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 353 0.360 (<br>371 0.385 (<br>329 0.316 (<br>395 0.075 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.366 0.346<br>0.392 0.363<br>0.315 0.301<br>0.093 0.068 3                                                                                                                                                             | 6.79<br>5.82<br>9.29<br>7.66<br>7.22<br>0.91                                                         |
| trans-1,3-Dichlorop Tetrachloroethene Ethyl methacrylate 1,1,2-Trichloroetha Dibromochloromethan 1,3-Dichloropropane 1,2-Dibromoethane 2-hexanone 1-Chlorohexane Quadratic                                               | 1.307 1.299 1 1.312 1.509 1 0.073 0.073 0 0.380 0.412 0 0.378 0.483 0 0.298 0.359 0 0.356 0.404 0 0.280 0.293 0 0.285 0.311 0 0.529 0.572 0 0.276 0.301 0 0.227 0.267 0 0.292 0.443 0 cegr., Force(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .233 1.1<br>.414 1.4<br>.076 0.0<br>.414 0.4<br>.493 0.5<br>.342 0.3<br>.461 0.4<br>.279 0.2<br>.312 0.3<br>.552 0.5<br>.305 0.3<br>.286 0.2<br>.451 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99 1.147 3 03 1.360 1 81 0.077 0 19 0.367 0 11 0.517 0 49 0.375 0 82 0.466 0 80 0.270 0 18 0.324 0 57 0.542 0 11 0.308 0 93 0.263 0 60 0.479 0 Coeffici                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.114 1.217<br>1.275 1.379<br>0.075 0.076<br>0.329 0.387<br>0.526 0.485 1<br>0.387 0.352<br>0.470 0.440 1<br>0.269 0.279<br>0.337 0.314<br>0.534 0.548<br>0.310 0.302<br>0.244 0.263<br>0.480 0.434 1<br>Lent = 0.9999 | 6.45<br>6.03<br>3.79<br>9.11<br>1.28<br>8.86<br>1.22<br>3.10<br>5.46<br>2.89<br>4.36<br>9.48<br>6.43 |
| Ethylbenzene Chlorobenzene 1,1,1,2-Tetrachloro m,p-Xylene o-Xylene Styrene Quadratic n Response Ratio                                                                                                                    | 1.450 1.674 1<br>0.863 0.989 0<br>0.246 0.303 0<br>0.863 1.179 1<br>0.831 1.110 1<br>0.586 0.832 0<br>eggr., Force(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .650 1.6<br>.978 0.9<br>.300 0.3<br>.190 1.2<br>.162 1.1<br>.909 0.9<br>,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31 1.584 1<br>99 1.039 1<br>08 0.314 0<br>02 1.093 0<br>81 1.146 1<br>57 0.956 0<br>Coeffici<br>*A + -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.427 1.569<br>1.013 0.980<br>0.328 0.300<br>0.906 1.072 1<br>1.093 1.087 1<br>0.944 0.864 1<br>Lent = 0.9999<br>0308 *A^2                                                                                             | 1.93<br>6.67                                                                                         |
| Isopropylbenzene  1,4-Dichlorobenzene 4-Bromofluorobenzen cis-1,4-Dichloro-2- n-Propylbenzene Bromobenzene 1,1,2,2-Tetrachloro 1,3,5-Trimethylbenz 2-Chlorotoluene trans-1,4-Dichloro- 1,2,3-Trichloroprop Cyclohexanone | 0.864 1.207 1 d 0.984 0.932 0 0.149 0.144 0 3.080 3.654 3 0.740 0.779 0 0.892 0.855 0 1.732 2.208 2 1.908 2.262 2 0.141 0 0.245 0.211 0 0.019 0.017 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .244 1.2IST .866 0.8 .153 0.1 .495 3.5 .739 0.7 .793 0.7 .246 2.3 .260 2.3 .157 0.1 .199 0.1 .018 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 71 1.235 1 D 48 0.836 0 73 0.165 0 07 3.311 2 81 0.846 0 85 0.742 0 08 2.397 2 18 2.377 2 64 0.159 0 98 0.191 0 17 0.017 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.171 1.166 1<br>1.20 0.823 0.881<br>1.157 0.157<br>1.833 3.313<br>1.874 0.793<br>1.730 0.800<br>1.189 2.180 10<br>1.176 2.217<br>1.153 0.155<br>1.196 0.207<br>1.016 0.017                                            | 3.94<br>3.00<br>7.15<br>6.87<br>9.27<br>7.02<br>7.94<br>0.65<br>7.47<br>5.62<br>9.69<br>5.90<br>3.15 |
|                                                                                                                                                                                                                          | TAME 1,2-Dichloroethane- 1,2-Dichloroethane Trichloroethene Methylcyclohexane Quadratic response Ratio Dibromomethane 1,2-Dichloropropane Bromodichloromethan Methyl methacrylate 2-Chloroethyl vinyl cis-1,3-Dichloropro Chlorobenzene-d5 Toluene-d8 Toluene 2-Nitropropane 4-Methyl-2-pentanon trans-1,3-Dichlorop Tetrachloroethene Ethyl methacrylate 1,1,2-Trichloroetha Dibromochloromethan 1,3-Dichloropropane 1,2-Dibromoethane 2-hexanone 1-Chlorohexane Quadratic response Ratio Ethylbenzene Chlorobenzene 1,1,2-Tetrachloro m,p-Xylene o-Xylene Styrene Quadratic response Ratio Bromoform Isopropylbenzene 1,4-Dichlorobenzene 4-Bromofluorobenzene cis-1,4-Dichloro-2- n-Propylbenzene Bromobenzene 1,2,2-Tetrachloro 1,3,5-Trimethylbenz 2-Chlorotoluene trans-1,4-Dichloro- 1,2,3-Trichloroprop Cyclohexanone 4-Chlorotoluene tert-Butylbenzene | TAME 1,2-Dichloroethane- 0.264 0.269 0 1,2-Dichloroethane- 0.264 0.269 0 1,2-Dichloroethane- 0.253 0.299 0 Methylcyclohexane 0.322 0.462 0 Response Ratio = 0.00000 +  Dibromomethane 0.152 0.173 0 Response Ratio = 0.00000 +  Dibromomethane 0.152 0.173 0 Response Ratio = 0.00000 +  Dibromomethane 0.298 0.365 0 Methyl methacrylate 0.279 0.270 0 2-Chloroethyl vinyl 0.032 0.046 0 Cis-1,3-Dichloropro 0.373 0.467 0  Chlorobenzene-d5 Toluene-d8 1.307 1.299 1 Toluene 1.312 1.509 1 2-Nitropropane 0.378 0.483 0 4-Methyl-2-pentanon 0.380 0.412 0 trans-1,3-Dichlorop 0.378 0.483 0 Tetrachloroethene 0.298 0.359 0 Ethyl methacrylate 0.356 0.404 0 1,1,2-Trichloroetha 0.280 0.293 0 Dibromochloromethan 0.285 0.311 0 1,3-Dichloropropane 0.529 0.572 0 1,2-Dibromoethane 0.276 0.301 0 2-hexanone 0.227 0.267 0 1-Chlorohexane 0.292 0.443 0 Quadratic regr., Force (0 Response Ratio = 0.00000 +  Ethylbenzene 1.450 1.674 1 Chlorobenzene 0.863 0.989 0 1,1,1,2-Tetrachloro 0.246 0.303 0 m,p-Xylene 0.831 1.110 1 Styrene 0.863 1.179 1 0-Xylene 0.863 1.179 1 0-Xylene 0.863 1.179 1 0-Xylene 0.864 1.207 1  Bromoform 0.166 0.186 0 Isopropylbenzene 0.864 1.207 1  1,4-Dichlorobenzene-d | TAME 1,2-Dichloroethane- 1,2-Dichloroethane- 1,2-Dichloroethane- 1,2-Dichloroethane- 1,2-Dichloroethane- 1,2-Dichloroethane- 1,3-Dichloroethane- 1,3-Dichloroethane- 1,3-Dichloroethane- 1,3-Dichloropropane- 1,2-Dichloropropane- 1,2-Chloroethyl vinyl 0.032 0.046 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.066 0.0   | TAME                                                                                                                                                                                                                   | TAME                                                                                                 |



## **Initial Calibration Summary**

| Job Numbe<br>Account:<br>Project: | Calibration Summary  br: F57525  TETRSCAI Tetra Tech NUS  Sigsbee Marina; NAS Key West, FL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sample:<br>Lab FileID:    | Page 3 of<br>VJ2474-ICC2474<br>J038601.D |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------|
| 90)                               | Pentachloroethane 0.379 0.422 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 0.423 | 443 0.478 (               | 0.496 0.440 9.56                         |
| 91)                               | sec-Butylbenzene 2.096 2.905 2.864 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 836 2.785 2               | 2.468 2.659 11.94                        |
| 92)                               | 4-Isopropyltoluene 1.622 2.178 2.204 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           |                                          |
| 93)                               | 1,3-Dichlorobenzene 1.149 1.339 1.278 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                          |
| 94)                               | 1,4-Dichlorobenzene 1.367 1.480 1.378 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                          |
| 95)                               | n-Butylbenzene 0.970 1.348 1.423 1.4<br>Quadratic regr., Force(0,0)<br>Response Ratio = 0.00000 + 1.50966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - Coeffic:                | ient = 0.9992                            |
| 96)                               | Benzyl Chloride 0.212 0.255 0.296 0.3<br>Quadratic regr., Force(0,0)<br>Response Ratio = 0.00000 + 0.29080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Coeffic:                | ient = 0.9998                            |
| 97)                               | 1,2-Dichlorobenzene 1.090 1.251 1.249 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 259 1.315                 | 1.295 1.243 6.40                         |
| 98)                               | 1,2-Dibromo-3-Chlor 0.098 0.101 0.104 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                          |
| 99)                               | Hexachlorobutadiene 0.333 0.375 0.374 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |                                          |
| 100)                              | 1,2,4-Trichlorobenz 0.403 0.560 0.640 0.6<br>Quadratic regr., Force(0,0)<br>Response Ratio = 0.00000 + 0.66998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 672 0.795 (<br>- Coeffic: | 0.775 0.641 22.70<br>ient = 0.9971       |
| 101)                              | Naphthalene 0.769 0.967 1.202 1.3<br>Quadratic regr., Force(0,0)<br>Response Ratio = 0.00000 + 1.33988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Coeffic:                | ient = 0.9977                            |
| 102)                              | 1,2,3-Trichlorobenz 0.337 0.448 0.500 0.5<br>Quadratic regr., Force(0,0)<br>Response Ratio = 0.00000 + 0.52227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Coeffic:                | ient = 0.9973                            |
| 103) I                            | Tert Butyl Alcohol-dlIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | רַת.                      |                                          |
| 104)                              | Ethanol 1.018 0.397 0.292 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                                          |
| 105)                              | acrolein 0.861 0.695 0.680 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                          |
| 106)                              | Tert Butyl Alcohol 0.693 1.195 1.063 1.0 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 1.01668                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 056 1.068 1<br>- Coeffic  | 1.109 1.031 16.82<br>ient = 0.9998       |
| 107)                              | tert Amyl alcohol 0.874 0.739 0.934 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 014 0.996 1               | 1.067 0.937 12.57                        |
| 108)                              | Isobutyl alcohol 1.164 0.643 0.487 0.5 Quadratic regr., Force(0,0) Response Ratio = 0.00000 + 0.45841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 512 0.466 (<br>- Coeffici | 0.518 0.632 42.43<br>ient = 0.9967       |
| 109)                              | 1,4-Dioxane 0.056 0.130 0.118 0.1<br>Quadratic regr., Force(0,0)<br>Response Ratio = 0.00000 + 0.11122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - Coeffici                | ient = 0.9997                            |

8260-JAPP9.M

Wed May 28 13:53:10 2008



## Instrument Performance Check (BFB)

Job Number: F57525

Account: **TETRSCAI Tetra Tech NUS** 

Sigsbee Marina; NAS Key West, FL Project:

VJ2475-BFB Sample: J038626.D Lab File ID:

Injection Date: 05/28/08 Injection Time: 08:49

Instrument ID: GCMSJ

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance |               |
|-----|------------------------------------|------------------|-------------------------|---------------|
| 50  | 15.0 - 40.0% of mass 95            | 27229            | 20.5                    | Pass          |
| 75  | 30.0 - 60.0% of mass 95            | 62938            | 47.4                    | Pass          |
| 95  | Base peak, 100% relative abundance | 132906           | 100.0                   | Pass          |
| 96  | 5.0 - 9.0% of mass 95              | 9255             | 7.0                     | Pass          |
| 173 | Less than 2.0% of mass 174         | 408              | 0.31                    | (0.35) a Pass |
| 174 | 50.0 - 100.0% of mass 95           | 117173           | 88.2                    | Pass          |
| 175 | 5.0 - 9.0% of mass 174             | 8749             | 6.6                     | (7.5) a Pass  |
| 176 | 95.0 - 101.0% of mass 174          | 113498           | 85.4                    | (96.9) a Pass |
| 177 | 5.0 - 9.0% of mass 176             | 7568             | 5.7                     | (6.7) b Pass  |

<sup>(</sup>a) Value is % of mass 174

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab       | Date     | Time     | Hours  | Client                                     |
|---------------|-----------|----------|----------|--------|--------------------------------------------|
| Sample ID     | File ID   | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|               |           |          |          |        |                                            |
| VJ2475-CC2474 | J038627.D | 05/28/08 | 09:45    | 00:56  | Continuing cal 4                           |
| VJ2475-BS     | J038628.D | 05/28/08 | 10:11    | 01:22  | Blank Spike                                |
| VJ2475-MB     | J038629.D | 05/28/08 | 11:04    | 02:15  | Method Blank                               |
| F57525-1      | J038630.D | 05/28/08 | 11:31    | 02:42  | KWSM-GW-DRUM-1                             |
| F57525-3      | J038631.D | 05/28/08 | 11:55    | 03:06  | KWSM-BCTF-GW-DRUM-3                        |
| ZZZZZZ        | J038632.D | 05/28/08 | 12:20    | 03:31  | (unrelated sample)                         |
| ZZZZZZ        | J038633.D | 05/28/08 | 12:44    | 03:55  | (unrelated sample)                         |
| F57610-7      | J038634.D | 05/28/08 | 13:09    | 04:20  | (used for QC only; not part of job F57525) |
| ZZZZZZ        | J038635.D | 05/28/08 | 13:33    | 04:44  | (unrelated sample)                         |
| F57610-7MS    | J038636.D | 05/28/08 | 13:58    | 05:09  | Matrix Spike                               |
| F57610-7MSD   | J038637.D | 05/28/08 | 14:22    | 05:33  | Matrix Spike Duplicate                     |
| ZZZZZZ        | J038638.D | 05/28/08 | 14:49    | 06:00  | (unrelated sample)                         |
| ZZZZZZ        | J038639.D | 05/28/08 | 15:13    | 06:24  | (unrelated sample)                         |
| ZZZZZZ        | J038640.D | 05/28/08 | 15:38    | 06:49  | (unrelated sample)                         |
| ZZZZZZ        | J038641.D | 05/28/08 | 16:02    | 07:13  | (unrelated sample)                         |
| ZZZZZZ        | J038642.D | 05/28/08 | 16:26    | 07:37  | (unrelated sample)                         |
| ZZZZZZ        | J038643.D | 05/28/08 | 16:51    | 08:02  | (unrelated sample)                         |
| ZZZZZZ        | J038644.D | 05/28/08 | 17:15    | 08:26  | (unrelated sample)                         |
| ZZZZZZ        | J038645.D | 05/28/08 | 17:39    | 08:50  | (unrelated sample)                         |
| ZZZZZZ        | J038646.D | 05/28/08 | 18:04    | 09:15  | (unrelated sample)                         |
| ZZZZZZ        | J038647.D | 05/28/08 | 18:29    | 09:40  | (unrelated sample)                         |
| ZZZZZZ        | J038648.D | 05/28/08 | 18:53    | 10:04  | (unrelated sample)                         |
| ZZZZZZ        | J038649.D | 05/28/08 | 19:17    | 10:28  | (unrelated sample)                         |
| ZZZZZZ        | J038650.D | 05/28/08 | 19:42    | 10:53  | (unrelated sample)                         |
| •             | -         |          |          |        | • •                                        |



<sup>(</sup>b) Value is % of mass 176

Page 2 of 2

Instrument Performance Check (BFB)
Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample:

VJ2475-BFB

Injection Date: 05/28/08

Lab File ID:

J038626.D

Injection Time: 08:49

11:17

Instrument ID: GCMSJ

Lab Sample ID Lab File ID Date Analyzed Time Analyzed

Hours Lapsed

Client Sample ID

**ZZZZZZ** 

J038651.D

05/28/08

20:06

(unrelated sample)

## Continuing Calibration Summary Job Number: F57525

Page 1 of 3 Sample: VJ2475-CC2474

Account:

**TETRSCAI Tetra Tech NUS** 

Lab FileID:

Project:

Sigsbee Marina; NAS Key West, FL

J038627.D

#### Evaluate Continuing Calibration Report

Data File : C:\MSDCHEM\1\DATA\052808\J038627.D

Vial: 7

Acq On

: 28 May 2008 9:45 am

Operator: JuanG

Sample

Inst : MSVOA6

Misc

: cc2474-4 : ms9891,vj2475,,,,

Multiplr: 1.00

MS Integration Params: RTEINT.P

Method

: C:\MSDCHEM\1\METHODS\8260-JAPP9.M (RTE Integrator) : SW-846 Method 5030B/8260B & EPA 624

Last Update : Wed May 28 13:22:02 2008

Response via: Multiple Level Calibration

: 0.001 Min. Rel. Area :

50% Max. R.T. Dev 0.50min

| Max. | RRF | Dev | : | 20% | Max. | Rel. | Area | : | 200% |
|------|-----|-----|---|-----|------|------|------|---|------|
|      |     |     |   |     |      |      |      |   |      |

|      | Compound                  | AvgRF    | CCRF   | %Dev Area%       | Dev(min)R.T. |
|------|---------------------------|----------|--------|------------------|--------------|
| 1 I  | Fluorobenzene             | 1.000    | 1.000  | 0.0 105          | 0.00 7.63    |
| 2    | Dichlorodifluoromethane   | 0.176    | 0.192  | -9.1 112         | 0.02 2.86    |
| 3 P  | Chloromethane             | 0.579    | 0.606  | -4.7 111         | 0.00 3.08    |
| 4 C  | Vinyl Chloride            | 0.502    | 0.543  | -8.2 	 109       | 0.00 3.20    |
| 5    | Bromomethane              | 0.315    | 0.370  | -17.5 123        | 0.00 3.61    |
| 6    | Chloroethane              | 0.304    | 0.370  | -21.7# 132       | 0.00 3.71    |
| 7    | Trichlorofluoromethane    | 0.424    | 0.498  | <b>-17.5</b> 130 | 0.00 3.91    |
| 8    | Ethyl Ether               | 0.459    | 0.482  | -5.0 98          | 0.00 4.14    |
| 9    | 1,2-Dichlorotrifluoroetha | 0.533    | 0.539  | -1.1 101         | 0.00 4.40    |
| 10 C | 1,1-Dichloroethene        | 0.577    | 0.607  | -5.2 	 104       | 0.00 4.43    |
| 11   | Freon 113                 | 0.385    | 0.385  | 0.0 107          | 0.00 4.48    |
| . 12 | Carbon Disulfide          | 1.469    | 1.493  | -1.6 108         | 0.02 4.52    |
| 13   | Iodomethane               | 0.668    | 0.742  | -11.1 110        | 0.00 4.61    |
| 14   | Allyl chloride            | 0.590    | 0.633  | -7.3 109         | 0.00 4.90    |
|      |                           | - Amount | Calc.  | %Drift           | ·            |
| 15   | Methylene Chloride        | 40.000   | 40.989 | -2.5 107         | 0.01 5.04    |
|      | ·                         | - AvaRF  | CCRF   | %Dev             |              |
| 16   | Acetone                   | 0.368    | 0.354  | 3.8 108          | -0.01 5.16   |
| 17   | Methyl acetate            | 0.051    | 0.051  | 0.0 108          | 0.00 5.16    |
| 18   | trans-1,2-Dichloroethene  | 0.422    | 0.440  | -4.3 110         | 0.00 5.18    |
| 19   | Hexane                    | 0.303    | 0.314  | -3.6 110         | 0.00 5.24    |
| 20   | Methyl Tert Butyl Ether   | 0.756    | 0.787  | -4.1 109         | 0.00 5.31    |
| `21  | Acetonitrile              | 0.025    | 0.026  | -4.0 110         | -0.06 5.58   |
| 22   | Di-isopropyl ether        | 1.178    | 1.231  | -4.5 109         | 0.00 5.65    |
| 23   | Chloroprene               | 0.421    | 0.451  | -7.1 112         | 0.00 5.80    |
| 24 P | 1,1-Dichloroethane        | 0.534    | 0.556  | -4.1 110         | 0.00 5.82    |
| 25   | Acrylonitrile             | 0.122    | 0.127  | -4.1 106         | -0.01 5.87   |
| 26   | ETBE                      | 0.978    | 1.026  | -4.9 107         | 0.00 6.04    |
| 27   | Vinyl acetate             | 0.722    | 0.786  | -8.9 	 104       | 0.00 6.03    |
| 28   | cis-1,2-Dichloroethene    | 0.302    | 0.316  | -4.6 111         | 0.00 6.37    |
| 29   | 2,2-Dichloropropane       | 0.355    | 0.379  | -6.8 111         | 0.00 6.51    |
| 30   | Bromochloromethane        | 0.177    | 0.186  | -5.1 113         | 0.00 6.58    |
| 31   | Cyclohexane               | 0.567    | 0.615  | -8.5 112         | 0.00 6.62    |
| 32 C | Chloroform                | 0.489    | 0.505  | -3.3 110         | 0.00 6.63    |
| 33   | Ethyl acetate             | 0.403    | 0.418  | -3.7 104         | 0.00 6.71    |
|      |                           | - Amount | Calc.  | %Drift           |              |
| 34   | Tetrahydrofuran           | 40.000   | 41.823 | -4.6 110         | 0.00 6.81    |
|      |                           | - AvgRF  | CCRF   | %Dev             |              |
|      |                           |          |        |                  |              |



| Conting Job Numb Account: Project: | uing Calibration Summary<br>ber: F57525<br>TETRSCAI Tetra Tech NUS<br>Sigsbee Marina; NAS Key West |                         |                         | Sample:<br>Lab FileID: | VJ2475-CC2474<br>J038627.D       | Page 2 of 3          |
|------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------|-------------------------|------------------------|----------------------------------|----------------------|
| 35 S<br>36<br>37                   | Dibromofluoromethane<br>Carbon Tetrachloride<br>1,1,1-Trichloroethane                              | 0.246<br>0.301<br>0.351 | 0.247<br>0.313<br>0.369 | -4.0                   | 107 0.00<br>107 0.00<br>111 0.00 | 6.82<br>6.81<br>6.87 |
| 38                                 | 2-Butanone                                                                                         | 0.173                   | 0.181                   | -4.6                   | 107 -0.01                        | 6.93                 |
| 39                                 | 1,1-Dichloropropene                                                                                | 0.379                   | 0.403                   |                        | 110 0.00 -                       | 6.98                 |
| 40                                 | Propionitrile                                                                                      | 0.052                   | 0.054                   |                        | 106 -0.02                        | 7.24                 |
| 41<br>42                           | Methacrylonitrile<br>Benzene                                                                       | 0.251<br>1.245          | 0.287<br>1.332          |                        | 112 0.00<br>110 0.00             | 7.26<br>7.24         |
| 43                                 | TAME                                                                                               | 0.749                   | 0.764                   |                        | 104 0.00                         | 7.32                 |
| 44 S                               | 1,2-Dichloroethane-d4                                                                              | 0.270                   | 0.285                   |                        | 104 0.00                         | 7.36                 |
| 45                                 | 1,2-Dichloroethane                                                                                 | 0.362                   | 0.361                   | 0.3                    | 107 0.00                         | 7.43                 |
| 46                                 | Trichloroethene                                                                                    | 0.300                   | 0.318                   | -6.0                   | 111 0.00                         | 7.80                 |
| 47                                 | Methylcyclohexane                                                                                  | - Amount 40.000         | Calc.<br>41.471         | %Drift<br>-3.7         | 111 0.00                         | 7.81                 |
|                                    |                                                                                                    | - AvgRF                 | CCRF                    | %Dev                   |                                  |                      |
| 48                                 | Dibromomethane                                                                                     | 0.174                   | 0.178                   | -2.3                   | 105 0.00                         | 8.22                 |
| 49 C                               | 1,2-Dichloropropane                                                                                | 0.346                   | 0.367                   | -6.1                   | 109 0.00                         | 8.31                 |
| 50                                 | Bromodichloromethane                                                                               |                         | 0.383                   |                        | 108 0.00                         | 8.35                 |
| 51<br>52                           | Methyl methacrylate<br>2-Chloroethyl vinyl ether                                                   | 0.301<br>0.068          | 0.318<br>0.075          | -5.6<br>-10.3          | 101 0.00<br>82 0.00              | 8.46<br>8.87         |
| 53                                 | cis-1,3-Dichloropropene                                                                            | 0.471                   | 0.506                   | -7.4                   | 109 0.00                         | 8.96                 |
| 54 I                               | Chlorobenzene-d5                                                                                   | 1.000                   | 1.000                   | 0.0                    | 107 0.00                         | 10.69                |
| 55 S<br>56 C                       | Toluene-d8 Toluene                                                                                 | 1.217<br>1.379          | 1.181<br>1.419          | 3.0<br>-2.9            | 106 0.00<br>109 0.00             | 9.15<br>9.21         |
| 57                                 | 2-Nitropropane                                                                                     | 0.076                   |                         | -2.9<br>-3.9           | 106 0.00                         | 9.42                 |
| 58                                 | 4-Methyl-2-pentanone                                                                               | 0.387                   | 0.402                   | -3.9                   | 103 0.00                         | 9.54                 |
| 59                                 | trans-1,3-Dichloropropene                                                                          | 0.485                   | 0.505                   | -4.1                   | 106 0.00                         | 9.59                 |
| 60                                 | Tetrachloroethene                                                                                  | 0.352                   | 0.363                   | -3.1                   | 112 0.00                         | 9.59                 |
| 61<br>62                           | Ethyl methacrylate 1,1,2-Trichloroethane                                                           | 0.440<br>0.279          | 0.466<br>0.273          | -5.9<br>2.2            | 104 0.00<br>105 0.00             | 9.71<br>9.76         |
| 63                                 | Dibromochloromethane                                                                               | 0.279                   | 0.273                   |                        | 105 0.00<br>110 0.00             | 9.76                 |
| 64                                 | 1,3-Dichloropropane                                                                                | 0.548                   | 0.558                   | -1.8                   | 107 0.00                         | 10.04                |
| 65                                 | 1,2-Dibromoethane                                                                                  |                         |                         | -3.6                   | 108 0.00                         | 10.21                |
| 66                                 | 2-hexanone                                                                                         | 0.263                   | 0.285                   | -8.4                   | 104 0.00                         | 10.36                |
| 67                                 | 1-Chlorohexane                                                                                     | - Amount 40.000         | Calc.<br>41.320         | %Drift<br>-3.3         | 112 0.00                         | 10.65                |
|                                    |                                                                                                    |                         |                         | %Dev                   |                                  |                      |
| 68 C                               | Ethylbenzene                                                                                       | 1.569                   | CCRF<br>1.652           |                        | 109 0.00                         | 10.71                |
| 69 P                               | Chlorobenzene                                                                                      | 0.980                   | 1.017                   | -3.8                   | 109 0.00                         | 10.71                |
| 70                                 | 1,1,1,2-Tetrachloroethane                                                                          |                         | 0.307                   | -2.3                   | 107 0.00                         | 10.76                |
| 71                                 | m,p-Xylene                                                                                         | 1.072                   | 1.206                   | -12.5                  | 108 0.00                         | 10.85                |
| 72                                 | o-Xylene                                                                                           | 1.087                   | 1.195                   | -9.9                   | 109 0.00                         | 11.29                |
| 73                                 | Styrene                                                                                            | - Amount 40.000         | Calc.<br>40.813         | %Drift<br>-2.0         | 109 0.00                         | 11.34                |
|                                    |                                                                                                    |                         |                         | %Dev                   |                                  |                      |
| 74 P                               | Bromoform                                                                                          | 0.210                   | CCRF<br>0.224           | -6.7                   | 106 0.00                         | 11.39                |
| 75                                 | Isopropylbenzene                                                                                   | 1.166                   | 1.295                   | -11.1                  | 109 0.00                         | 11.60                |
| 76 I                               | 1,4-Dichlorobenzene-d4                                                                             | 1.000                   | 1.000                   | 0.0                    | 107 0.00                         | 13.05                |
| 77 S                               | 4-Bromofluorobenzene                                                                               | 0.881                   | 0.868                   | 1.5                    | 109 0.00                         | 11.90                |
| 78<br>79                           | cis-1,4-Dichloro-2-butene<br>n-Propylbenzene                                                       | 0.157<br>3.313          | 0.134<br>3.565          | 14.6<br>-7.6           | 83 0.00<br>108 0.00              | 11.95<br>12.02       |
| 80                                 | Bromobenzene                                                                                       | 0.793                   | 0.809                   | -7.0                   | 111 0.00                         | 12.02                |
|                                    |                                                                                                    |                         |                         |                        |                                  |                      |



## Continuing Calibration Summary

| Conting Job Numb Account: Project: | uing Calibration Summary Der: F57525 TETRSCAI Tetra Tech NUS Sigsbee Marina; NAS Key Wes |         |         | Sample:<br>Lab FileID: | VJ2475-CC24<br>J038627.D | Page 3 of 3        |
|------------------------------------|------------------------------------------------------------------------------------------|---------|---------|------------------------|--------------------------|--------------------|
| 81 P                               | 1,1,2,2-Tetrachloroethane                                                                | 0.800   | 0.776   | 3.0                    | 105 0.00                 | 12.07              |
| 82                                 | 1,3,5-Trimethylbenzene                                                                   | 2.180   | 2.375   | -8.9                   | 110 0.00                 | 12.20              |
| 83                                 | 2-Chlorotoluene                                                                          | 2.217   | 2.376   | -7.2                   | 109 0.00                 | 12.20              |
| 84                                 | trans-1,4-Dichloro-2-Bute                                                                | 0.155   | 0.127   | 18.1                   | 82 0.00                  | 12.26              |
| 85                                 | 1,2,3-Trichloropropane                                                                   | 0.207   | 0.194   | 6.3                    | 105 0.00                 | 12.24              |
| 86                                 | Cyclohexanone                                                                            | 0.017   | 0.017   | 0.0                    | 108 -0.01                | 12.30              |
| 87                                 | 4-Chlorotoluene                                                                          | 1.869   | 1.961   | -4.9                   | 109 0.00                 | 12.37              |
| 88                                 | tert-Butylbenzene                                                                        | 1.175   | 1.247   | -6.1                   | 110 0.00                 | 12.54              |
| 89                                 | 1,2,4-Trimethylbenzene                                                                   | 2.127   | 2.268   | -6.6                   | 109 0.00                 | 12.61              |
| 90                                 | Pentachloroethane                                                                        | 0.440   | 0.447   | -1.6                   | 107 0.00                 | 12.58              |
| 91                                 | sec-Butylbenzene                                                                         | 2.659   | 2.890   | -8.7                   | 109 0.00                 | 12.72              |
| 92                                 | 4-Isopropyltoluene                                                                       | 2.100   | 2.283   | -8.7                   | 109 0.00                 | 12.86              |
| 93                                 | 1,3-Dichlorobenzene                                                                      | 1.295   | 1.332   | -2.9                   | 110 0.00                 | 12.98              |
| 94                                 | 1,4-Dichlorobenzene                                                                      | 1.412   | 1.427   | -1.1                   | 109 0.00                 | 13.06              |
|                                    |                                                                                          | Amount  | Calc.   | %Drift                 |                          | and while the same |
| 95                                 | n-Butylbenzene                                                                           | 40.000  |         | 0.1                    | 109 0.00                 | 13.30              |
| 96                                 | Benzyl Chloride                                                                          | 40.000  | 39.784  | 0.5                    | 107 0.00                 | 13.31              |
| <b>^</b> -                         | 4.01.13                                                                                  |         | CCRF    | %Dev                   |                          |                    |
| 97                                 | 1,2-Dichlorobenzene                                                                      | 1.243   | 1.285   | -3.4                   | 109 0.00                 |                    |
| 98                                 | 1,2-Dibromo-3-Chloropropa                                                                |         | 0.102   | 1.0                    | 103 0.00                 |                    |
| 99                                 | Hexachlorobutadiene                                                                      | 0.381   | 0.399   | -4.7                   | 116 0.00                 | 14.80              |
|                                    |                                                                                          | Amount  | Calc.   | %Drift                 |                          |                    |
| 100                                | 1,2,4-Trichlorobenzene                                                                   | 40.000  | 39.939  | 0.2                    | 114 0.00                 | 14.84              |
| 101                                | Naphthalene                                                                              | 40.000  | 39.272  | 1.8                    | 108 0.00                 | 15.13              |
| 102                                | 1,2,3-Trichlorobenzene                                                                   | 40.000  | 39.620  | 1.0                    | 112 0.00                 | 15.29              |
|                                    |                                                                                          | AvgRF   | CCRF    | %Dev                   |                          |                    |
| 103 I                              | Tert Butyl Alcohol-d10                                                                   | 1.000   | 1.000   | 0.0                    | 112 -0.09                | 5.30               |
| 103 1                              | Ethanol                                                                                  | 0.417   | 0.235   | 43.6#                  |                          | 4.40               |
| 105                                | acrolein                                                                                 | 0.716   | 0.604   | 15.6                   | 97 -0.02                 | 4.74               |
| 103                                |                                                                                          |         |         |                        | 37 -0.02                 | 4.74               |
|                                    |                                                                                          |         |         | %Drift                 |                          |                    |
| 106                                | Tert Butyl Alcohol                                                                       | 400.000 | 382.354 | 4.4                    | 106 -0.09                | 5.38               |
| 107                                |                                                                                          |         | CCRF    | %Dev                   |                          |                    |
| 107                                | tert Amyl alcohol                                                                        | 0.937   | 0.901   | 3.8                    | 99 -0.04                 | 7.48               |
| 100                                | Tachutul alachal                                                                         |         |         | %Drift                 | 112 0 04                 |                    |
| 108                                | Isobutyl alcohol                                                                         | 800.000 |         | -7.9                   |                          | 7.36               |
| 109                                | 1,4-Dioxane                                                                              | 800.000 | 010.252 | -1.3                   | 116 -0.18                | 8.57               |
|                                    |                                                                                          |         |         |                        | <b></b>                  |                    |

<sup>(#) =</sup> Out of Range J038601.D 8260-JAPP9.M



SPCC's out = 0 CCC's out = 0 Thu May 29 12:31:51 2008

## Volatile Internal Standard Area Summary

Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Check Std:<br>Lab File ID:<br>Instrument ID: | VG1912-CC1901<br>G0050452.D<br>GCMSG |      | Injection Date:<br>Injection Time:<br>Method: |      |  |
|----------------------------------------------|--------------------------------------|------|-----------------------------------------------|------|--|
|                                              | IS 1                                 | IS 2 | IS 3                                          | IS 4 |  |

|               | 1S 1    |       | IS 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | IS 3   |       | IS 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|---------------|---------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|               | AREA    | RT    | AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT    | AREA   | RT    | AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT   |
| Check Std     | 933036  | 11.25 | 668667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.82 | 386724 | 17.09 | 158487                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.13 |
| Upper Limit a | 1866072 | 11.75 | 1337334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 773448 |       | 316974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.63 |
| Lower Limit b | 466518  | 10.75 | 334334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.32 | 193362 | 16.59 | 79244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.63 |
| Lab           | IS 1    |       | IS 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,     | IS 3   |       | IS 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
| Sample ID     | AREA    | RT    | AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT    | AREA   | RT    | AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RT   |
| VG1912-BS     | 944868  | 11.25 | 694752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.83 | 392045 | 17.08 | 161354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.14 |
| VG1912-MB     | 899159  | 11.25 | 681955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 363625 |       | 103778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.14 |
| ZZZZZZ        | 964147  | 11.25 | 677332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.82 | 363223 |       | 103528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.15 |
| ZZZZZZ        | 918533  | 11.25 | 669411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 372650 |       | 93007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.14 |
| ZZZZZZ        | 874764  | 11.25 | 613550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 366164 |       | 109261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.15 |
| ZZZZZZ        | 901610  | 11.25 | 649895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 332860 |       | 108319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.15 |
| ZZZZZZ        | 900683  | 11.25 | 659841                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 345203 |       | A CONTRACTOR OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY O | 8.14 |
| ZZZZZZ        | 907556  | 11.25 | 659604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 348687 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.15 |
| F57493-14     | 871249  | 11.25 | 630993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 331814 |       | 97114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.15 |
| ZZZZZZ        | 863933  | 11.25 | 600958                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 276012 |       | 95387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.15 |
| F57525-2      | 906273  | 11.25 | 626053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 317945 |       | [비교생산] 최고 - 1 (B.C 1987)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.14 |
| F57525-4      | 904904  |       | 640647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 334446 | 17.09 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.15 |
| ZZZZZZ        | 952654  |       | 687649                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 379736 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.16 |
| F57493-14MS   | 927180  | 11.25 | 614218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 352367 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.15 |
| F57493-14MSD  | 889248  | 11.25 | 624283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 331529 |       | 医异类艾斯氏征 医二氏病的 医乳腺病                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.15 |
| ZZZZZZ        | 893121  | 11.25 | 612008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 320024 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.17 |
| ZZZZZZ        | 879684  |       | Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Company of the Compan |       | 350581 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.16 |
| ZZZZZZ        | 832073  | 11.25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 314087 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.16 |
| ZZZZZZ        | 838216  | 11.25 | 601827                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 311011 | . 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.17 |
| ZZZZZZ        | 828108  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 233467 |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.16 |
| ZZZZZZ        | 873533  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        | 17.09 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.15 |
| ZZZZZZ        | 828577  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |       | (1) 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.16 |
| ZZZZZZ        | 833052  |       | A CONTRACTOR OF THE PROPERTY OF THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |        | 17.09 | The first of the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.15 |

IS 1 = Fluorobenzene

IS 2 = Chlorobenzene-D5

= 1,4-Dichlorobenzene-d4 IS 3

IS 4 = Tert Butyl Alcohol-D10

<sup>(</sup>a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

<sup>(</sup>b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

## Volatile Internal Standard Area Summary

Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Check Std:

VJ2475-CC2474

Injection Date: 05/28/08 Injection Time: 09:45

Lab File ID: Instrument ID: GCMSJ

J038627.D

Method:

SW846 8260B

|                          | 0 01.103     |      |              |       |              | J.,   | .010 02002   |      |
|--------------------------|--------------|------|--------------|-------|--------------|-------|--------------|------|
|                          | IS 1<br>AREA | RT   | IS 2<br>AREA | RT    | IS 3<br>AREA | RT    | IS 4<br>AREA | RT   |
| Check Std                | 2401050      | 7.63 | 2108966      | 10.69 | 1142156      | 13.05 | 233262       | 5.30 |
| Upper Limit <sup>a</sup> | 4802100      | 8.13 | 4217932      | 11.19 | 2284312      | 13.55 | 466524       | 5.80 |
| Lower Limit b            | 1200525      | 7.13 | 1054483      | 10.19 | 571078       | 12.55 | 116631       | 4.80 |
| Lab                      | IS 1         |      | IS 2         |       | IS 3         |       | IS 4         |      |
| Sample ID                | AREA         | RT   | AREA         | RT    | AREA         | RT    | AREA         | RT   |
| VJ2475-BS                | 2468598      | 7.63 | 2123288      | 10.69 | 1144281      | 13.05 | 250662       | 5.38 |
| VJ2475-MB                | 2163465      | 7.62 | 1678055      | 10.69 | 770572       | 13.05 | 202083       | 5.39 |
| F57525-1                 | 2053692      | 7.62 | 1698346      | 10.69 | 882260       | 13.05 | 283647       | 5.34 |
| F57525-3                 | 2130744      | 7.61 | 1635485      | 10.69 | 794839       | 13.05 | 230973       | 5.32 |
| ZZZZZZ                   | 2070039      | 7.62 | 1621508      | 10.69 | 741365       | 13.05 | 175923       | 5.34 |
| ZZZZZZ                   | 1919026      | 7.63 | 1519231      | 10.69 | 705013       | 13.05 | 176823       | 5.38 |
| F57610-7                 | 1868524      | 7.63 | 1488791      | 10.69 | 680892       | 13.05 | 175820       | 5.39 |
| ZZZZZZ                   | 1812663      | 7.62 | 1453195      | 10.69 | 663945       | 13.05 | 175650       | 5.34 |
| F57610-7MS               | 2028078      | 7.62 | 1674552      | 10.69 | 927943       | 13.05 | 185350       | 5.39 |
| F57610-7MSD              | 2186122      | 7.62 | 1826644      | 10.69 | 986275       | 13.05 | 189616       | 5.39 |
| ZZZZZZ                   | 1983377      | 7.62 | 1583835      | 10.69 | 720868       | 13.05 | 189700       | 5.39 |
| ZZZZZZ                   | 1877137      | 7.62 | 1470323      | 10.69 | 670671       | 13.05 | 157005       | 5.37 |
| ZZZZZZ                   | 1853748      | 7.63 | 1480059      |       | 677153       | 13.05 | 159926       | 5.31 |
| ZZZZZZ                   | 1774306      | 7.63 | 1408868      |       | 653694       | 13.05 | 163880       | 5.38 |
| ZZZZZZ                   | 1737316      | 7.62 | 1369870      |       | 629649       |       | 165408       | 5.36 |
| ZZZZZZ                   | 1703824      | 7.63 | 1365394      |       | 633913       |       | 159704       | 5.39 |
| ZZZZZZ                   | 1676081      | 7.62 | 1317895      |       | 614775       |       | 162960       | 5.39 |
| ZZZZZZ                   | 2247196      | 7.62 | 1827389      |       | 902045       |       | 214516       | 5.51 |
| ZZZZZZ                   | 2197168      | 7.61 | 1788748      |       | 860764       |       | 203006       | 5.56 |
| ZZZZZZ                   | 2253246      | 7.61 | 1778703      |       | 842059       |       | 171315       | 5.42 |
| ZZZZZZ                   | 2318633      | 7.62 | 2010560      | 2     | 1133436      |       | 175653       | 5.41 |
| ZZZZZZ                   | 2458003      | 7.61 | 2148467      |       | 1234129      |       | 199833       | 5.40 |
| ZZZZZZ                   | 2654637      | 7.61 | 2317439      | :     | 1302118      |       | 236691       | 5.39 |
| ZZZZZZ                   | 2739631      | 7.61 | 2176245      | 10.69 | 995025       | 13.05 | 234217       | 5.39 |

IS 1 = Fluorobenzene IS 2 = Chlorobenzene-D5 IS 3 = 1,4-Dichlorobenzene-d4 = Tert Butyl Alcohol-D10 IS 4

<sup>(</sup>a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

<sup>(</sup>b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Job Number:

er: F57525

Account: TETH

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Method: SW846 8270C BY SIM

Matrix: AQ

#### Samples and QC shown here apply to the above method

| Lab       |                                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                           |
|-----------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File ID   | <b>S</b> 1                                                                            | S2                                                                                                         | S3                                                                                                                                                                                                                                                                        |
| W040640.D | 54.0                                                                                  | 46.0                                                                                                       | 60.0                                                                                                                                                                                                                                                                      |
| W040641.D | 64.0                                                                                  | 64.0                                                                                                       | 71.0                                                                                                                                                                                                                                                                      |
| W040625.D | 69.0                                                                                  | 60.0                                                                                                       | 69.0                                                                                                                                                                                                                                                                      |
| W040624.D | 62.0                                                                                  | 53.0                                                                                                       | 68.0                                                                                                                                                                                                                                                                      |
| W040672.D | 57.0                                                                                  | 60.0                                                                                                       | 66.0                                                                                                                                                                                                                                                                      |
| W040629.D | 60.0                                                                                  | 52.0                                                                                                       | 63.0                                                                                                                                                                                                                                                                      |
| W040630.D | 62.0                                                                                  | 62.0                                                                                                       | 65.0                                                                                                                                                                                                                                                                      |
|           | File ID<br>W040640.D<br>W040641.D<br>W040625.D<br>W040624.D<br>W040672.D<br>W040629.D | File ID S1  W040640.D 54.0  W040641.D 64.0  W040625.D 69.0  W040624.D 62.0  W040672.D 57.0  W040629.D 60.0 | File ID       S1       S2         W040640.D       54.0       46.0         W040641.D       64.0       64.0         W040625.D       69.0       60.0         W040624.D       62.0       53.0         W040672.D       57.0       60.0         W040629.D       60.0       52.0 |

Surrogate Compounds Recovery Limits

S1 = Nitrobenzene-d5 S2 = 2-Fluorobiphenyl S3 = Terphenyl-d14 42-108% 40-106%

39-121%

7.6

Job Number: Account:

F57525

**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

Method: SW846 8270C BY SIM

Matrix: SO

Samples and QC shown here apply to the above method

| Lab         | Lab      |                              |          |                           |
|-------------|----------|------------------------------|----------|---------------------------|
| Sample ID   | File ID  | S1                           | S2       | S3                        |
|             |          | 09.55 <u>7</u> 2.5 10.55 (4) | Erisaus. | are Nephree reactives are |
| F57525-2    | R13873.D | 67.0                         | 71.0     | 89.0                      |
| F57525-4    | R13889.D | 81.0                         | 83.0     | 84.0                      |
| OP25149-BS  | R13856.D | 80.0                         | 80.0     | 93.0                      |
| OP25149-MB  | R13857.D | 81.0 a                       | 77.0 a   | 96.0 <sup>a</sup>         |
| OP25149-MB  | R13888.D | 83.0 <sup>a</sup>            | 80.0 a   | 91.0 <sup>-a</sup>        |
| OP25149-MS  | R13869.D | 63.0                         | 74.0     | 83.0                      |
| OP25149-MSD | R13870.D | 65.0                         | 75.0     | 91.0                      |

Surrogate Compounds Recovery Limits

S1 = Nitrobenzene-d5 40-105% S2 = 2-Fluorobiphenyl 43-107% S3 = Terphenyl-d1445-119%

(a) Surrogate recoveries corrected for actual spike amount.

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample      | File ID   | 1 | Analyzed | By | Prep Date | Prep Batch | Analytical Batch |
|-------------|-----------|---|----------|----|-----------|------------|------------------|
| OP25106-MS  | W040629.D |   | 05/20/08 | RB | 05/19/08  | OP25106    | SW2081           |
| OP25106-MSD | W040630.D |   | 05/20/08 | RB | 05/19/08  | OP25106    | SW2081           |
| F57485-3    | W040628.D |   | 05/20/08 | RB | 05/19/08  | OP25106    | SW2081           |
|             |           |   |          |    |           |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-1, F57525-3

|           |                        | F57485-3 | Spike | MS   | MS    | MSD     | MSD |     | Limits    |
|-----------|------------------------|----------|-------|------|-------|---------|-----|-----|-----------|
| CAS No.   | Compound               | ug/l Q   | ug/l  | ug/l | %     | ug/l    | %   | RPD | Rec/RPD   |
| 83-32-9   | Acenaphthene           | 0.96 U   | 48.1  | 29.7 | 62    | 30.8    | 64  | 4   | 60-94/25  |
| 208-96-8  | Acenaphthylene         | 0.96 U   | 48.1  | 30.3 | 63    | 31.5    | 66  | 4   | 60-92/24  |
| 120-12-7  | Anthracene             | 0.96 U   | 48.1  | 32.9 | 68*   | 34.3    | 71  | 4   | 69-98/19  |
| 56-55-3   | Benzo(a)anthracene     | 0.19 U   | 4.81  | 3.5  | 73    | 3.6     | 75  | 3   | 65-102/23 |
| 50-32-8   | Benzo(a)pyrene         | 0.19 U   | 4.81  | 3.8  | 79    | 3.8     | 79  | 0   | 74-106/23 |
| 205-99-2  | Benzo(b)fluoranthene   | 0.19 U   | 4.81  | 3.6  | 75    | 3.7     | 77  | 3   | 71-104/24 |
| 191-24-2  | Benzo(g,h,i)perylene   | 0.19 U   | 4.81  | 3.4  | 71    | 3.4     | 71  | 0   | 60-104/22 |
| 207-08-9  | Benzo(k)fluoranthene   | 0.19 U   | 4.81  | 3.5  | 73    | 3.6     | 75  | 3   | 70-104/22 |
| 218-01-9  | Chrysene               | 0.19 U   | 4.81  | 3.5  | 73    | 3.6     | 75  | 3   | 69-104/21 |
| 53-70-3   | Dibenzo(a,h)anthracene | 0.19 U   | 4.81  | 3.5  | 73    | 3.5     | 73  | 0   | 63-107/21 |
| 206-44-0  | Fluoranthene           | 0.96 U   | 48.1  | 34.6 | 72    | 35.2    | 73  | 2   | 70-99/23  |
| 86-73-7   | Fluorene               | 0.96 U   | 48.1  | 32.3 | 67    | 33.4    | 69  | 3   | 62-95/25  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 0.19 U   | 4.81  | 3.5  | 73    | 3.5     | 73  | 0   | 63-107/24 |
| 90-12-0   | 1-Methylnaphthalene    | 0.96 U   | 48.1  | 29.3 | 61    | 30.3    | 63  | 3   | 57-94/26  |
| 91-57-6   | 2-Methylnaphthalene    | 0.96 U   | 48.1  | 27.4 | 57*   | 28.1    | 58  | 3   | 58-90/23  |
| 91-20-3   | Naphthalene            | 0.96 U   | 48.1  | 28.7 | 60    | 29.4    | 61  | 2   | 58-92/23  |
| 85-01-8   | Phenanthrene           | 0.96 U   | 48.1  | 31.4 | 65*   | 32.7    | 68  | 4   | 68-98/23  |
| 129-00-0  | Pyrene                 | 0.96 U   | 48.1  | 32.7 | 68    | 33.8    | 70  | 3   | 66-102/25 |
|           |                        |          |       |      |       |         |     |     |           |
| CAS No.   | Surrogate Recoveries   | MS       | MSD   | F57  | 485-3 | Limits  |     |     |           |
| 4165-60-0 | Nitrobenzene-d5        | 60%      | 62%   | 71%  | 6     | 42-108% | ó   |     |           |
| 321-60-8  | 2-Fluorobiphenyl       | 52%      | 62%   | 61%  | 6     | 40-106% | ó   |     |           |
| 1718-51-0 | Terphenyl-d14          | 63%      | 65%   | 75%  | 6     | 39-121% | ó   |     |           |
|           |                        |          |       |      |       |         |     |     |           |



Page 1 of 1

# Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample      | File ID  | DF | Analyzed | Ву | Prep Date | Prep Batch | Analytical Batch |
|-------------|----------|----|----------|----|-----------|------------|------------------|
| OP25149-MS  | R13869.D | 4  | 05/23/08 | RB | 05/22/08  | OP25149    | SR643            |
| OP25149-MSD | R13870.D | 4  | 05/23/08 | RB | 05/22/08  | OP25149    | SR643            |
| F57653-4    | R13878.D | 4  | 05/23/08 | RB | 05/22/08  | OP25149    | SR643            |
| 137033-4    | K13070.D | *1 | 03/23/00 | Κb | 03/22/00  | 01 23143   | 31(043           |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-2, F57525-4

|           |                        | F57653      | -4 | Spike | MS    | MS    | MSD     | MSD |     | Limits    |
|-----------|------------------------|-------------|----|-------|-------|-------|---------|-----|-----|-----------|
| CAS No.   | Compound               | ug/kg       | Q  | ug/kg | ug/kg | %     | ug/kg   | %   | RPD | Rec/RPD   |
| 02.22.0   | A                      | 220 11      |    | 1000  | 770   | 70    | 020     | .00 |     | C1 07/07  |
| 83-32-9   | Acenaphthene           | 320 U       |    | 1000  | 778   | 78    | 838     | 83  | 7   | 61-97/27  |
| 208-96-8  | Acenaphthylene         | 320 U       |    | 1000  | 782   | 78    | 828     | 82  | 6   | 61-95/29  |
| 120-12-7  | Anthracene             | 320 U       |    | 1000  | 793   | 79    | 885     | 88  | 11: | 64-100/24 |
| 56-55-3   | Benzo(a)anthracene     | 64 U        |    | 100   | 75.6  | 76    | 88.8    | 88  | 16  | 63-106/35 |
| 50-32-8   | Benzo(a)pyrene         | 64 U        |    | 100   | 78.4  | .78   | 91.0    | 90  | 15  | 69-107/33 |
| 205-99-2  | Benzo(b)fluoranthene   | 64 U        |    | 100   | 81.3  | 81    | 95.1    | 94  | 16  | 69-107/32 |
| 191-24-2  | Benzo(g,h,i)perylene   | 64 U        |    | 100   | 65.7  | 66    | 74.4    | 74  | 12  | 56-110/37 |
| 207-08-9  | Benzo(k)fluoranthene   | <b>64</b> U |    | 100   | 78.2  | 78    | 90.5    | 90  | 15  | 64-109/34 |
| 218-01-9  | Chrysene               | 64 U        |    | 100   | 77.8  | 78    | 91.7    | 91  | 16  | 64-108/34 |
| 53-70-3   | Dibenzo(a,h)anthracene | 64 U        |    | 100   | 64.4  | 64    | 76.7    | 76  | 17  | 58-113/38 |
| 206-44-0  | Fluoranthene           | 320 U       |    | 1000  | 778   | 78    | 909     | 90  | 16  | 64-104/33 |
| 86-73-7   | Fluorene               | 320 U       |    | 1000  | 774   | 77    | 854     | 84  | 10  | 61-99/28  |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | 64 U        |    | 100   | 65.0  | 65    | 75.0    | 74  | 14  | 59-113/34 |
| 90-12-0   | 1-Methylnaphthalene    | 320 U       |    | 1000  | 799   | 80    | 857     | 85  | 7 ( | 58-98/30  |
| 91-57-6   | 2-Methylnaphthalene    | 320 U       |    | 1000  | 721   | 72    | 773     | 76  | 7   | 57-95/31  |
| 91-20-3   | Naphthalene            | 320 U       |    | 1000  | 767   | 77    | 827     | 82  | 8   | 58-94/31  |
| 85-01-8   | Phenanthrene           | 320 U       |    | 1000  | 771   | 77    | 870     | 86  | 12  | 65-100/33 |
| 129-00-0  | Pyrene                 | 320 U       |    | 1000  | 889   | 89    | 991     | 98  | 11  | 62-107/37 |
|           |                        |             |    |       |       |       |         |     |     |           |
| CAS No.   | Surrogate Recoveries   | MS          |    | MSD   | F57   | 653-4 | Limits  |     |     |           |
| 4165-60-0 | Nitrobenzene-d5        | 63%         |    | 65%   | 779   | 6     | 40-105% | )   |     |           |
| 321-60-8  | 2-Fluorobiphenyl       | 74%         |    | 75%   | 819   | 6     | 43-107% |     |     |           |
| 1718-51-0 | Terphenyl-d14          | 83%         |    | 91%   | 889   | 6     | 45-119% | )   |     |           |



Blank Spike Summary
Job Number: F57525
Account: TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample     | File ID   | DF | Analyzed | By | Prep Date 05/19/08 | Prep Batch | Analytical Batch |
|------------|-----------|----|----------|----|--------------------|------------|------------------|
| OP25106-BS | W040625.D | 1  | 05/20/08 | RB |                    | OP25106    | SW2081           |
|            |           |    |          |    |                    |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-1, F57525-3

|                                    |                                                      | Spike             | BSP  | BSP                     |        |
|------------------------------------|------------------------------------------------------|-------------------|------|-------------------------|--------|
| CAS No.                            | Compound                                             | ug/l              | ug/l | %                       | Limits |
| 83-32-9                            | Acenaphthene                                         | 25                | 17.5 | 70                      | 60-94  |
| 208-96-8                           | Acenaphthylene                                       | 25                | 18.2 | 73                      | 60-92  |
| 120-12-7                           | Anthracene                                           | 25                | 18.8 | 75                      | 69-98  |
| 56-55-3                            | Benzo(a)anthracene                                   | 2.5               | 1.9  | 76                      | 65-102 |
| 50-32-8                            | Benzo(a)pyrene                                       | 2.5               | 2.0  | 80                      | 74-106 |
| 205-99-2                           | Benzo(b)fluoranthene                                 | 2.5               | 2.0  | 80                      | 71-104 |
| 191-24-2                           | Benzo(g,h,i)perylene                                 | 2.5               | 1.9  | 76                      | 60-104 |
| 207-08-9                           | Benzo(k)fluoranthene                                 | 2.5               | 1.9  | 76                      | 70-104 |
| 218-01-9                           | Chrysene                                             | 2.5               | 1.9  | 76                      | 69-104 |
| 53-70-3                            | Dibenzo(a,h)anthracene                               | 2.5               | 1.9  | 76                      | 63-107 |
| 206-44-0                           | Fluoranthene                                         | 25                | 19.2 | 77                      | 70-99  |
| 86-73-7                            | Fluorene                                             | 25                | 18.9 | 76                      | 62-95  |
| 193-39-5                           | Indeno(1,2,3-cd)pyrene                               | 2.5               | 1.9  | 76                      | 63-107 |
| 90-12-0                            | 1-Methylnaphthalene                                  | 25                | 17.1 | 68                      | 57-94  |
| 91-57-6                            | 2-Methylnaphthalene                                  | 25                | 16.0 | 64                      | 58-90  |
| 91-20-3                            | Naphthalene                                          | 25                | 16.8 | 67                      | 58-92  |
| 85-01-8                            | Phenanthrene                                         | 25                | 18.0 | 72                      | 68-98  |
| 129-00-0                           | Pyrene                                               | 25                | 18.6 | 74                      | 66-102 |
|                                    | •                                                    |                   |      |                         |        |
| CAS No.                            | Surrogate Recoveries                                 | BSP               | Liı  | nits                    |        |
| 4165-60-0<br>321-60-8<br>1718-51-0 | Nitrobenzene-d5<br>2-Fluorobiphenyl<br>Terphenyl-d14 | 69%<br>60%<br>69% | 40-  | -108%<br>-106%<br>-121% |        |



# Blank Spike Summary Job Number: F57525

Account:

**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

| Sample     | File ID  | DF | Analyzed | By | Prep Date 05/22/08 | Prep Batch | Analytical Batch |
|------------|----------|----|----------|----|--------------------|------------|------------------|
| OP25149-BS | R13856.D | 1  | 05/23/08 | RB |                    | OP25149    | SR643            |
|            |          |    |          |    | •                  |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-2, F57525-4

| CAS No.                            | Compound                                             | Spike<br>ug/kg    | BSP<br>ug/kg         | BSP<br>% | Limits |
|------------------------------------|------------------------------------------------------|-------------------|----------------------|----------|--------|
| 83-32-9                            | Acenaphthene                                         | 833               | 684                  | 82       | 61-97  |
| 208-96-8                           | Acenaphthylene                                       | 833               | 685                  | 82       | 61-95  |
| 120-12-7                           | Anthracene                                           | 833               | 715                  | 86       | 64-100 |
| 56-55-3                            | Benzo(a)anthracene                                   | 83.3              | 73.6                 | 88       | 63-106 |
| 50-32-8                            | Benzo(a)pyrene                                       | 83.3              | 76.4                 | 92       | 69-107 |
| 205-99-2                           | Benzo(b)fluoranthene                                 | 83.3              | 82.0                 | 98       | 69-107 |
| 191-24-2                           | Benzo(g,h,i)perylene                                 | 83.3              | 61.1                 | 73       | 56-110 |
| 207-08-9                           | Benzo(k)fluoranthene                                 | 83.3              | 75.2                 | 90       | 64-109 |
| 218-01-9                           | Chrysene                                             | 83.3              | 73.7                 | 88       | 64-108 |
| 53-70-3                            | Dibenzo(a,h)anthracene                               | 83.3              | 62.3                 | 75       | 58-113 |
| 206-44-0                           | Fluoranthene                                         | 833               | 715                  | 86       | 64-104 |
| 86-73-7                            | Fluorene                                             | 833               | 702                  | 84       | 61-99  |
| 193-39-5                           | Indeno(1,2,3-cd)pyrene                               | 83.3              | 63.5                 | 76       | 59-113 |
| 90-12-0                            | 1-Methylnaphthalene                                  | 833               | 716                  | 86       | 58-98  |
| 91-57-6                            | 2-Methylnaphthalene                                  | 833               | 644                  | 77       | 57-95  |
| 91-20-3                            | Naphthalene                                          | 833               | 666                  | 80       | 58-94  |
| 85-01-8                            | Phenanthrene                                         | 833               | 693                  | 83       | 65-100 |
| 129-00-0                           | Pyrene                                               | 833               | 811                  | 97       | 62-107 |
|                                    |                                                      |                   |                      |          |        |
| CAS No.                            | Surrogate Recoveries                                 | BSP               | Lim                  | its      |        |
| 4165-60-0<br>321-60-8<br>1718-51-0 | Nitrobenzene-d5<br>2-Fluorobiphenyl<br>Terphenyl-d14 | 80%<br>80%<br>93% | 40-1<br>43-1<br>45-1 | 07%      |        |



Method Blank Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample     | File ID   | DF | Analyzed | By | Prep Date 05/19/08 | Prep Batch | Analytical Batch |
|------------|-----------|----|----------|----|--------------------|------------|------------------|
| OP25106-MB | W040624.D | 1  | 05/20/08 | RB |                    | OP25106    | SW2081           |
|            |           |    |          |    |                    |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-1, F57525-3

| CAS No.   | Compound               | Result | RL     | MDL   | Units Q |
|-----------|------------------------|--------|--------|-------|---------|
| 83-32-9   | Acenaphthene           | ND     | 1.0    | 0.50  | ug/l    |
| 208-96-8  | Acenaphthylene         | ND     | 1.0    | 0.50  | ug/l    |
| 120-12-7  | Anthracene             | ND     | 1.0    | 0.50  | ug/l    |
| 56-55-3   | Benzo(a)anthracene     | ND     | 0.20   | 0.050 | ug/l    |
| 50-32-8   | Benzo(a)pyrene         | ND     | 0.20   | 0.10  | ug/l    |
| 205-99-2  | Benzo(b)fluoranthene   | ND     | 0.20   | 0.050 | ug/l    |
| 191-24-2  | Benzo(g,h,i)perylene   | ND     | 0.20   | 0.10  | ug/l    |
| 207-08-9  | Benzo(k)fluoranthene   | ND     | 0.20   | 0.10  | ug/l    |
| 218-01-9  | Chrysene               | ND     | 0.20   | 0.10  | ug/l    |
| 53-70-3   | Dibenzo(a,h)anthracene | ND     | 0.20   | 0.050 | ug/l    |
| 206-44-0  | Fluoranthene           | ND     | 1.0    | 0.25  | ug/l    |
| 86-73-7   | Fluorene               | ND     | 1.0    | 0.25  | ug/l    |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | ND     | 0.20   | 0.050 | ug/l    |
| 90-12-0   | 1-Methylnaphthalene    | ND     | 1.0    | 0.25  | ug/l    |
| 91-57-6   | 2-Methylnaphthalene    | ND     | 1.0    | 0.25  | ug/l    |
| 91-20-3   | Naphthalene            | ND     | 1.0    | 0.25  | ug/l    |
| 85-01-8   | Phenanthrene           | ND     | 1.0    | 0.50  | ug/l    |
| 129-00-0  | Pyrene                 | ND     | 1.0    | 0.25  | ug/l    |
| CAS No.   | Surrogate Recoveries   |        | Limit  | q     |         |
| CAD NO.   | Bull ogute Recoveries  |        | 17HHIL |       |         |
| 4165-60-0 | Nitrobenzene-d5        | 62%    | 42-10  | 8%    |         |
| 321-60-8  | 2-Fluorobiphenyl       | 53%    | 40-10  | 6%    |         |
| 1718-51-0 | Terphenyl-d14          | 68%    | 39-12  | 1%    |         |



# Method Blank Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample<br>OP25106-MB | File ID<br>W040672.D | DF<br>1 | Analyzed 05/21/08 | By<br>RB | Prep Date 05/19/08 | Prep Batch<br>OP25106 | Analytical Batch<br>SW2082 |
|----------------------|----------------------|---------|-------------------|----------|--------------------|-----------------------|----------------------------|
|                      |                      |         |                   |          |                    |                       |                            |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-1, F57525-3

| CAS No.   | Compound               | Result | RL     | MDL   | Units Q |
|-----------|------------------------|--------|--------|-------|---------|
| 83-32-9   | Acenaphthene           | ND     | 1.0    | 0.50  | ug/l    |
| 208-96-8  | Acenaphthylene         | ND     | 1.0    | 0.50  | ug/l    |
| 120-12-7  | Anthracene             | ND     | 1.0    | 0.50  | ug/l    |
| 56-55-3   | Benzo(a)anthracene     | ND     | 0.20   | 0.050 | ug/l    |
| 50-32-8   | Benzo(a)pyrene         | ND     | 0.20   | 0.10  | ug/l    |
| 205-99-2  | Benzo(b)fluoranthene   | ND     | 0.20   | 0.050 | ug/l    |
| 191-24-2  | Benzo(g,h,i)perylene   | ND     | 0.20   | 0.10  | ug/l    |
| 207-08-9  | Benzo(k)fluoranthene   | ND     | 0.20   | 0.10  | ug/l    |
| 218-01-9  | Chrysene               | ND     | 0.20   | 0.10  | ug/l    |
| 53-70-3   | Dibenzo(a,h)anthracene | ND     | 0.20   | 0.050 | ug/l    |
| 206-44-0  | Fluoranthene           | ND     | 1.0    | 0.25  | ug/l    |
| 86-73-7   | Fluorene               | ND     | 1.0    | 0.25  | ug/l    |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | ND     | 0.20   | 0.050 | ug/l    |
| 90-12-0   | 1-Methylnaphthalene    | ND     | 1.0    | 0.25  | ug/l    |
| 91-57-6   | 2-Methylnaphthalene    | ND     | 1.0    | 0.25  | ug/l    |
| 91-20-3   | Naphthalene            | ND     | 1.0    | 0.25  | ug/l    |
| 85-01-8   | Phenanthrene           | ND     | 1.0    | 0.50  | ug/l    |
| 129-00-0  | Pyrene                 | ND -   | 1.0    | 0.25  | ug/l    |
|           |                        |        |        |       |         |
| CAS No.   | Surrogate Recoveries   |        | Limits |       | •       |
| 4165-60-0 | Nitrobenzene-d5        | 57%    | 42-108 | %     |         |
| 321-60-8  | 2-Fluorobiphenyl       | 60%    | 40-106 |       |         |
| 1718-51-0 | Terphenyl-d14          | 66%    | 39-121 | %     |         |



### Method Blank Summary

Job Number:

F57525

Account:

**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

| Sample     | File ID  | DF | Analyzed | By | Prep Date 05/22/08 | Prep Batch | Analytical Batch |
|------------|----------|----|----------|----|--------------------|------------|------------------|
| OP25149-MB | R13857.D | 1  | 05/23/08 | RB |                    | OP25149    | SR643            |
|            |          |    |          |    |                    |            |                  |

43-107%

45-119%

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-2, F57525-4

321-60-8

| CAS No.   | Compound               | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL       | MDL | Units Q |
|-----------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|---------|
| 83-32-9   | Acenaphthene           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 17  | ug/kg   |
| 208-96-8  | Acenaphthylene         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 17  | ug/kg   |
| 120-12-7  | Anthracene             | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 10  | ug/kg   |
| 56-55-3   | Benzo(a)anthracene     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 50-32-8   | Benzo(a)pyrene         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 205-99-2  | Benzo(b)fluoranthene   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 191-24-2  | Benzo(g,h,i)perylene   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 207-08-9  | Benzo(k)fluoranthene   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 218-01-9  | Chrysene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 53-70-3   | Dibenzo(a,h)anthracene | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 206-44-0  | Fluoranthene           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 12  | ug/kg   |
| 86-73-7   | Fluorene               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 10  | ug/kg   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13       | 3.3 | ug/kg   |
| 90-12-0   | 1-Methylnaphthalene    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 10  | ug/kg   |
| 91-57-6   | 2-Methylnaphthalene    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 10  | ug/kg   |
| 91-20-3   | Naphthalene            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 10  | ug/kg   |
| 85-01-8   | Phenanthrene           | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 10  | ug/kg   |
| 129-00-0  | Pyrene                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67       | 12  | ug/kg   |
|           |                        | a de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la consta | **** *** |     |         |
| CAS No.   | Surrogate Recoveries   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Limi     | ts  |         |
| 4165-60-0 | Nitrobenzene-d5        | 81% a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40-10    | )5% |         |

96% a

2-Fluorobiphenyl

1718-51-0 Terphenyl-d14



<sup>(</sup>a) Surrogate recoveries corrected for actual spike amount.

# Method Blank Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample     | File ID  | DF | Analyzed | By | Prep Date 05/22/08 | Prep Batch | Analytical Batch |
|------------|----------|----|----------|----|--------------------|------------|------------------|
| OP25149-MB | R13888.D | 1  | 05/26/08 | RB |                    | OP25149    | SR644            |
|            |          |    |          |    |                    |            |                  |

The QC reported here applies to the following samples:

Method: SW846 8270C BY SIM

F57525-2, F57525-4

| CAS No.   | Compound                                | Result                   | RL           | MDL  | Units Q |
|-----------|-----------------------------------------|--------------------------|--------------|------|---------|
| 83-32-9   | Acenaphthene                            | ND                       | ₹ 67         | 17   | ug/kg   |
| 208-96-8  | Acenaphthylene                          | ND                       | 67           | 17   | ug/kg   |
| 120-12-7  | Anthracene                              | ND                       | 67           | 10   | ug/kg   |
| 56-55-3   | Benzo(a)anthracene                      | ND                       | 13           | 3.3  | ug/kg   |
| 50-32-8   | Benzo(a)pyrene                          | ND                       | 13           | 3.3  | ug/kg   |
| 205-99-2  | Benzo(b)fluoranthene                    | ND                       | 13           | 3.3  | ug/kg   |
| 191-24-2  | Benzo(g,h,i)perylene                    | ND                       | 13           | 3.3  | ug/kg   |
| 207-08-9  | Benzo(k)fluoranthene                    | ND                       | 13           | 3.3  | ug/kg   |
| 218-01-9  | Chrysene                                | ND                       | 13           | 3.3  | ug/kg   |
| 53-70-3   | Dibenzo(a,h)anthracene                  | ND                       | 13           | 3.3  | ug/kg   |
| 206-44-0  | Fluoranthene                            | ND                       | 67           | 12   | ug/kg   |
| 86-73-7   | Fluorene                                | ND                       | 67           | 10   | ug/kg   |
| 193-39-5  | Indeno(1,2,3-cd)pyrene                  | ND                       | 13           | 3.3  | ug/kg   |
| 90-12-0   | 1-Methylnaphthalene                     | ND                       | 67           | 10 . | ug/kg   |
| 91-57-6   | 2-Methylnaphthalene                     | ND                       | 67           | 10   | ug/kg   |
| 91-20-3   | Naphthalene                             | ND                       | 67           | 10   | ug/kg   |
| 85-01-8   | Phenanthrene                            | ND                       | 67           | 10   | ug/kg   |
| 129-00-0  | Pyrene                                  | ND                       | 67           | 12   | ug/kg   |
|           |                                         | •                        |              |      |         |
| CAS No.   | Surrogate Recoveries                    |                          | Limit        | ts   |         |
| 4165-60-0 | Nitrobenzene-d5                         | 83% a                    | 40-10        | 5%   |         |
| 321-60-8  | 2-Fluorobiphenyl                        | 80% a                    | 43-10        | 7%   |         |
|           | - · · · · · · · · · · · · · · · · · · · | 1 1210121111111111111111 | 0000 <b></b> |      |         |

91% <sup>a</sup> 45-119%

1718-51-0 Terphenyl-d14



<sup>(</sup>a) Surrogate recoveries corrected for actual spike amount.

Instrument Performance Check (DFTPP)

Job Number: F57525

Account: TETRSCAI Tetra Tech NUS

Project: Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: SR642-DFTPP

Injection Date: 05/22/08

File ID: R13825.D

Injection Time: 12:50

Instrument ID: GCMSR

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance |                     | Pass/Fail |  |
|-----|------------------------------------|------------------|-------------------------|---------------------|-----------|--|
| 51  | 30.0 - 60.0% of mass 198           | 139911           | 35.5                    |                     | Pass      |  |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0                     | (0.0) a             | Pass      |  |
| 69  | Mass 69 relative abundance         | 154574           | 39.2                    |                     | Pass      |  |
| 70  | Less than 2.0% of mass 69          | 800              | 0.2                     | (0.52) a            | Pass      |  |
| 127 | 40.0 - 60.0% of mass 198           | 173625           | 44.1                    |                     | Pass      |  |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                     |                     | Pass      |  |
| 198 | Base peak, 100% relative abundance | 393963           | 100.0                   |                     | Pass      |  |
| 199 | 5.0 - 9.0% of mass 198             | 25806            | 6.6                     |                     | Pass      |  |
| 275 | 10.0 - 30.0% of mass 198           | 115884           | 29.4                    |                     | Pass      |  |
| 365 | 1.0 - 100.0% of mass 198           | 13893            | 3.5                     |                     | Pass      |  |
| 441 | Present, but less than mass 443    | 58187            | 14.8                    | (84.1) b            | Pass      |  |
| 442 | 40.0 - 100.0% of mass 198          | 367627           | 93.3                    |                     | Pass      |  |
| 443 | 17.0 - 23.0% of mass 442           | 69192            | 17.6                    | (18.8) <sup>c</sup> | Pass      |  |

<sup>(</sup>a) Value is % of mass 69

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab          | Lab      | Date     | Time     | Hours  | Client                                                                                                                                                                   |
|--------------|----------|----------|----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample ID    | File ID  | Analyzed | Analyzed | Lapsed | Sample ID                                                                                                                                                                |
| SR642-IC642  | R13826.D | 05/22/08 | 13:07    | 00:17  | Initial cal 1 Initial cal 2 Initial cal 3 Initial cal 4 Initial cal 5 Initial cal 6 Initial cal 7                                                                        |
| SR642-IC642  | R13827.D | 05/22/08 | 13:33    | 00:43  |                                                                                                                                                                          |
| SR642-IC642  | R13828.D | 05/22/08 | 14:00    | 01:10  |                                                                                                                                                                          |
| SR642-IC642  | R13829.D | 05/22/08 | 14:27    | 01:37  |                                                                                                                                                                          |
| SR642-IC642  | R13830.D | 05/22/08 | 14:54    | 02:04  |                                                                                                                                                                          |
| SR642-IC642  | R13831.D | 05/22/08 | 15:20    | 02:30  |                                                                                                                                                                          |
| SR642-IC642  | R13832.D | 05/22/08 | 15:47    | 02:57  |                                                                                                                                                                          |
| SR642-ICV642 | R13833.D | 05/22/08 | 16:14    | 03:24  | Initial cal verification 4 Blank Spike Method Blank (unrelated sample) (used for QC only; not part of job F57525) Matrix Spike Matrix Spike Duplicate (unrelated sample) |
| OP25145-BS   | R13834.D | 05/22/08 | 16:49    | 03:59  |                                                                                                                                                                          |
| OP25145-MB   | R13835.D | 05/22/08 | 17:15    | 04:25  |                                                                                                                                                                          |
| ZZZZZZ       | R13837.D | 05/22/08 | 18:19    | 05:29  |                                                                                                                                                                          |
| F57666-2     | R13838.D | 05/22/08 | 18:46    | 05:56  |                                                                                                                                                                          |
| OP25145-MS   | R13839.D | 05/22/08 | 19:16    | 06:26  |                                                                                                                                                                          |
| OP25145-MSD  | R13840.D | 05/22/08 | 19:42    | 06:52  |                                                                                                                                                                          |
| ZZZZZZ       | R13844.D | 05/22/08 | 21:35    | 08:45  |                                                                                                                                                                          |
| ZZZZZZ       | R13847.D | 05/22/08 | 22:54    | 10:04  | (unrelated sample)                                                                                                                                                       |
| ZZZZZZ       | R13849.D | 05/22/08 | 23:47    | 10:57  | (unrelated sample)                                                                                                                                                       |



<sup>(</sup>b) Value is % of mass 443

<sup>(</sup>c) Value is % of mass 442

Initial Calibration Summary Job Number: F57525

Account:

Project:

**TETRSCAI Tetra Tech NUS** 

Sigsbee Marina; NAS Key West, FL

Sample: Lab FileID: SR642-ICC642 R13829.D

Response Factor Report MSBNA3

Method

: C:\msdchem\1\METHODS\SIM PAHC.M (RTE Integrator)

Title

: PAH's by 8270 SIM

Last Update : Thu May 22 18:38:48 2008 Response via : Initial Calibration

Calibration Files

L4 =R13829.D L3 =R13828.D L7 =R13832.D L1 =R13826.D L2 =R13827.D L5 =R13830.D L6 =R13831.D icv =R13833.D

| С   | ompound                      | L1         | L2          | L3.   | L4    | L5     | L6     | L7      | icv Avg  | %RSD        |
|-----|------------------------------|------------|-------------|-------|-------|--------|--------|---------|----------|-------------|
|     | <del></del>                  |            | <del></del> |       |       |        |        |         |          |             |
|     | I Naphthale                  |            |             |       |       |        |        |         |          | -           |
|     | Nitrobenzene                 |            |             |       |       |        |        |         |          |             |
|     | N-nitroso-di                 |            |             |       |       |        |        |         | 0.128    |             |
|     | Naphthalene                  |            |             |       |       |        |        |         | 1.180    | 7.90        |
|     | 2-Methylnaph<br>1-Methylnaph |            |             |       |       |        |        |         | 0.779    |             |
|     |                              |            |             |       |       |        |        |         | 0.712    |             |
| 7)  | I Acenaphtl                  | nene-di    | 10          |       |       |        | ISTD   |         |          | <del></del> |
| 8)  | Hexachlorocy                 |            | 0.189       | 0.259 | 0.335 | 0.362  | 0.353  | 0.351   | 0.308    | 22.51       |
|     | 2-Fluorobiph                 |            |             |       |       |        |        |         | 1.836    | 4.21        |
|     | Acenaphthyle                 |            |             |       |       |        |        |         | 2.393    | 6.06        |
|     | Acenaphthene                 |            |             |       |       |        |        |         | 1.484    |             |
| 12) | 2,4-Dinitrop                 |            | 0.043       | 0.078 | 0.156 | 0.181  | 0.212  | 0.251   | 0.154    |             |
|     | 4-Nitropheno                 |            |             |       |       |        |        |         | 0.300    |             |
| 14) | Fluorene                     | 1.516      | 1.558       | 1.595 | 1.644 | 1.676  | 1.552  | 1.496   | 1.577    | 4.17        |
| 15) | I Phenanth                   | rene-di    | 10          |       |       | :      | ISTD   |         |          | _           |
| 16) | Phenanthrene                 | 1.379      | 1.420       | 1.440 | 1.494 | 1.517  | 1.383  | 1.331   | 1.423    | 4.64        |
| 17) | Anthracene                   | 1.383      | 1.432       | 1.475 | 1.541 | 1.549  | 1.405  | 1.346   | 1.447    | 5.38        |
| 18) | Carbazole                    | 1.156      | 1.200       | 1.214 | 1.219 | 1.118  | 0.953  | 0.932   | 1.113    | 10.97       |
| 19) | Fluoranthene                 | 1.387      | 1.456       | 1.481 | 1.548 | 1.567  | 1.433  | 1.383   | 1.465    | 4.93        |
| 20) | I Chrysene-                  | -d12       |             |       |       |        | ISTD   |         |          | _           |
|     | Pyrene                       |            |             |       |       |        |        |         |          |             |
| 22) | Terphenyl-d1                 | 0.933      | 0.959       | 1.020 | 1.061 | 1.088  | 1.036  | 0.989   | 1.012    | 5.49        |
| 23) | Benzo[a]anth                 | 1.605      | 1.571       | 1.574 | 1.654 | 1.695  | 1.656  | 1.630   | 1.627    | 2.82        |
| 24) | Chrysene                     | 1.446      | 1.490       | 1.516 | 1.622 | 1.655  | 1.618  | 1.579   | 1.561    | 4.99        |
| 25) | I Perylene-                  | -d12       |             |       |       |        | ISTD   |         |          | _           |
|     | Benzo[b]fluo                 |            |             |       |       |        |        |         |          |             |
|     | Benzo[k]fluo                 |            |             |       |       |        |        |         |          | 7.80        |
|     | Benzo[a]pyre                 |            |             |       |       |        |        |         | 1.350    | 6.75        |
|     | Indeno[1,2,3                 |            |             |       |       |        |        |         | 1.228    |             |
| 30) | Dibenz[a,h]a                 | 1.089      | 1.096       | 1.145 | 1.227 | 1.284  | 1.270  | 1.269   | 1.197    |             |
| 31) | Benzo[g,h,i]                 | 1.316      | 1.346       | 1.364 | 1.430 | 1.496  | 1.457  | 1.442   | 1.407    | 4.67        |
| (#) | = Out of Rang                | <br>ge ### | † Numb      | er of | calib | cation | levels | exceede | d format | ###         |

SIM PAHC.M Thu May 22 18:39:37 2008



## Instrument Performance Check (DFTPP)

Job Number: F57525

Account: TETRSCAI Tetra Tech NUS

Project: Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: SR643-DFTPP R13854.D Injection Date: 05/23/08 Injection Time: 10:45

Instrument ID: GCMSR

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relati<br>Abunda |          | Pass/Fail |
|-----|------------------------------------|------------------|--------------------|----------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 65952            | 42.2               |          | Pass      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0                | (0.0) a  | Pass      |
| 69  | Mass 69 relative abundance         | 71389            | 45.7               |          | Pass      |
| 70  | Less than 2.0% of mass 69          | 207              | 0.13               | (0.29) a | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 73912            | 47.3               |          | Pass      |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                |          | Pass      |
| 198 | Base peak, 100% relative abundance | 156322           | 100.0              |          | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 10143            | 6.5                |          | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 42952            | 27.5               |          | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 4801             | 3.1                |          | Pass      |
| 441 | Present, but less than mass 443    | 18554            | 11.9               | (76.4) b | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | 119877           | 76.7               |          | Pass      |
| 443 | 17.0 - 23.0% of mass 442           | 24288            | 15.5               | (20.3) c | Pass      |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab         | Lab      | Date       | Time     | Hours  | Client                 |
|-------------|----------|------------|----------|--------|------------------------|
| Sample ID   | File ID  | Analyzed   | Analyzed | Lapsed | Sample ID              |
|             |          |            |          |        |                        |
| SR643-CC642 | R13855.D | . 05/23/08 | 11:02    | 00:17  | Continuing cal 4       |
| OP25149-BS  | R13856.D | 05/23/08   | 11:43    | 00:58  | Blank Spike            |
| OP25149-MB  | R13857.D | 05/23/08   | 12:10    | 01:25  | Method Blank           |
| ZZZZZZ      | R13859.D | 05/23/08   | 13:11    | 02:26  | (unrelated sample)     |
| ZZZZZZ      | R13860.D | 05/23/08   | 13:40    | 02:55  | (unrelated sample)     |
| ZZZZZZ      | R13861.D | 05/23/08   | 14:10    | 03:25  | (unrelated sample)     |
| ZZZZZZ      | R13862.D | 05/23/08   | 14:37    | 03:52  | (unrelated sample)     |
| ZZZZZZ      | R13863.D | 05/23/08   | 15:04    | 04:19  | (unrelated sample)     |
| ZZZZZZ      | R13864.D | 05/23/08   | 15:31    | 04:46  | (unrelated sample)     |
| ZZZZZZ      | R13867.D | 05/23/08   | 17:31    | 06:46  | (unrelated sample)     |
| ZZZZZZ      | R13868.D | 05/23/08   | 17:58    | 07:13  | (unrelated sample)     |
| OP25149-MS  | R13869.D | 05/23/08   | 18:24    | 07:39  | Matrix Spike           |
| OP25149-MSD | R13870.D | 05/23/08   | 18:51    | 08:06  | Matrix Spike Duplicate |
| ZZZZZZ      | R13871.D | 05/23/08   | 19:18    | 08:33  | (unrelated sample)     |
| ZZZZZZ      | R13872.D | 05/23/08   | 19:44    | 08:59  | (unrelated sample)     |
| F57525-2    | R13873.D | 05/23/08   | 20:11    | 09:26  | KWSM-SO-DRUM-2         |
| ZZZZZZ      | R13875.D | 05/23/08   | 21:04    | 10:19  | (unrelated sample)     |
| ZZZZZZ      | R13876.D | 05/23/08   | 21:31    | 10:46  | (unrelated sample)     |
| ZZZZZZ      | R13877.D | 05/23/08   | 21:57    | 11:12  | (unrelated sample)     |
|             |          |            |          |        | •                      |



TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample:

SR643-DFTPP

Injection Date: 05/23/08

Lab File ID: Instrument ID: GCMSR

R13854.D

Injection Time: 10:45

Lab Sample ID

Lab File ID Date Analyzed Time Hours Analyzed Lapsed Client Sample ID

F57653-4

R13878.D

05/23/08

22:24

11:39

(used for QC only; not part of job F57525)

# Continuing Calibration Summary Job Number: F57525

SR643-CC642 Sample: Lab FileID: R13855.D

Account: TETRSCAI Tetra Tech NUS

Project: Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\052308\R13855.D Vial: 2 Acq On : 23 May 2008 11:02 am Operator: rayb Sample : cc642-4
Misc : op25149,sr643,30.0,,,1,1,soil Inst : MSBNA3 Multiplr: 1.00

MS Integration Params: RTEINT.P

: C:\msdchem\1\METHODS\SIM PAHC.M (RTE Integrator)

: C:\msqcncm... : PAH's by 8270 SIM

Last Update : Fri May 23 12:15:31 2008 Response via: Multiple Level Calibration

Min. RRF : 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

| 1 I Naphthalene-d8 1.000 1.000 0.0 134 0.00             | 5.61  |
|---------------------------------------------------------|-------|
| 2 S Nitrobenzene-d5 0.378 0.387 -2.4 132 0.00           | 4.99  |
| 3 P N-nitroso-di-n-propylamin 0.128 0.135 -5.5 137 0.00 | 4.87  |
| 4 Naphthalene 1.180 1.252 -6.1 133 0.00                 | 5.64  |
| 5 2-Methylnaphthalene 0.779 0.806 -3.5 131 0.00         | 6.38  |
| 6 1-Methylnaphthalene 0.712 0.744 -4.5 132 0.00         | 6.49  |
| 7 I Acenaphthene-d10 1.000 1.000 0.0 130 0.00           | 7.76  |
| 8 P Hexachlorocyclopentadiene 0.308 0.312 -1.3 121 0.00 | 6.56  |
| 9 S 2-Fluorobiphenyl 1.836 1.949 -6.2 133 0.00          | 6.84  |
| 10 Acenaphthylene 2.393 2.568 -7.3 132 0.00             | 7.56  |
| 11 C Acenaphthene 1.484 1.572 -5.9 132 0.00             | 7.82  |
| 12 P 2,4-Dinitrophenol 0.154 0.190 -23.4# 159 0.02      | 7.94  |
| 13 P 4-Nitrophenol 0.300 0.293 2.3 121 0.00             | 8.10  |
| 14 Fluorene 1.577 1.654 -4.9 131 0.00                   | 8.64  |
| 15 I Phenanthrene-d10 1.000 1.000 0.0 128 0.00          | 10.22 |
| 16 Phenanthrene 1.423 1.489 -4.6 128 0.00               | 10.26 |
| 17 Anthracene 1.447 1.530 -5.7 127 0.00                 | 10.36 |
| 18 Carbazole 1.113 1.215 -9.2 128 0.00                  | 10.70 |
| 19 C Fluoranthene 1.465 1.490 -1.7 124 0.00             | 12.43 |
| 20 I Chrysene-d12 1.000 1.000 0.0 109 0.00              | 15.12 |
| 21 Pyrene 1.991 2.347 -17.9 123 -0.01                   | 12.83 |
| 22 S Terphenyl-d14 1.012 1.176 -16.2 121 0.00           | 13.26 |
| 23 Benzo[a]anthracene 1.627 1.680 -3.3 111 0.00         | 15.11 |
| 24 Chrysene 1.561 1.618 -3.7 109 0.00                   | 15.17 |
| 25 I Perylene-d12 1.000 1.000 0.0 91 0.00               | 17.63 |
| 26 Benzo[b]fluoranthene 1.463 1.643 -12.3 100 -0.01     | 17.01 |
| 27 Benzo[k]fluoranthene 1.571 1.684 -7.2 94 -0.02       | 17.06 |
| 28 C Benzo[a]pyrene 1.350 1.418 -5.0 93 -0.02           | 17.53 |
| 29 Indeno[1,2,3-cd]pyrene 1.228 1.107 9.9 81 -0.02      | 19.20 |
| 30 Dibenz[a,h]anthracene 1.197 1.051 12.2 78 -0.02      | 19.26 |
| 31 Benzo[g,h,i]perylene 1.407 1.227 12.8 78 -0.01       | 19.55 |

(#) = Out of Range (#) = Out of Range SPCC's out = 0 CCC's R13829.D SIM\_PAHC.M Mon May 26 19:07:10 2008

SPCC's out = 0 CCC's out = 0



Instrument Performance Check (DFTPP)

Job Number: F57525

TETRSCAI Tetra Tech NUS Account:

Project: Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: SR644-DFTPP R13880.D

Injection Date: 05/26/08

Instrument ID: GCMSR

Injection Time: 19:24

52072

16.9 (19.3) <sup>c</sup>

Pass

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relative<br>Abundance | Pass/Fail |
|-----|------------------------------------|------------------|-------------------------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 122688           | 39.9                    | Pass      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0 (0.0) a             | Pass      |
| 69  | Mass 69 relative abundance         | 132098           | 43.0                    | Pass      |
| 70  | Less than 2.0% of mass 69          | 626              | 0.2 (0.47) a            | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 140600           | 45.8                    | Pass      |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                     | Pass      |
| 198 | Base peak, 100% relative abundance | 307264           | 100.0                   | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 20393            | 6.6                     | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 88128            | 28.7                    | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 10106            | 3.3                     | Pass      |
| 441 | Present, but less than mass 443    | 42111            | 13.7 (80.9) b           | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | 269189           | 87.6                    | Pass      |

- (a) Value is % of mass 69
- (b) Value is % of mass 443

443 17.0 - 23.0% of mass 442

(c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab         | Lab      | Date     | Time     | Hours  | Client             |
|-------------|----------|----------|----------|--------|--------------------|
| Sample ID   | File ID  | Analyzed | Analyzed | Lapsed | Sample ID          |
| SR644-CC642 | R13881.D | 05/26/08 | 19:40    | 00:16  | Continuing cal 5   |
| OP25143-BS  | R13882.D | 05/26/08 | 20:15    | 00:51  | Blank Spike        |
| OP25143-MB  | R13883.D | 05/26/08 | 20:41    | 01:17  | Method Blank       |
| ZZZZZZ      | R13884.D | 05/26/08 | 21:08    | 01:44  | (unrelated sample) |
| ZZZZZZ      | R13886.D | 05/26/08 | 22:02    | 02:38  | (unrelated sample) |
| ZZZZZZ      | R13887.D | 05/26/08 | 22:28    | 03:04  | (unrelated sample) |
| OP25149-MB  | R13888.D | 05/26/08 | 22:55    | 03:31  | Method Blank       |
| F57525-4    | R13889.D | 05/26/08 | 23:22    | 03:58  | KWSM-SO-DRUM-4     |
| ZZZZZZ      | R13890.D | 05/26/08 | 23:48    | 04:24  | (unrelated sample) |



Continuing Calibration Summary Job Number: F57525

Page 1 of 1 Sample: SR644-CC642

Account:

**TETRSCAI Tetra Tech NUS** 

Lab FileID:

R13881.D

Project:

Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\msdchem\1\DATA\052608\R13881.D

Vial: 2

Acq On : 26 May 2008 7:40 pm

Operator: rayb

Inst : MSBNA3

Sample : cc642-5 Misc : op25143,sr644,1000,,,1,1,water

Multiplr: 1.00

MS Integration Params: RTEINT.P

Method

: C:\msdchem\1\METHODS\SIM PAHC.M (RTE Integrator)

: PAH's by 8270 SIM

Last Update : Mon May 26 20:08:51 2008 Response via : Multiple Level Calibration

Min. RRF

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

|                                                 | Compound                                                                                                                                | AvgRF                                                                | CCRF                                                                 | %Dev Area%                                                                       | Dev(m                                                | in)R.T.                                                      |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|
| 1 I<br>2 S<br>3 P<br>4<br>5                     | Naphthalene-d8 Nitrobenzene-d5 N-nitroso-di-n-propylamin Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene                            | 1.000<br>0.378<br>0.128<br>1.180<br>0.779<br>0.712                   | 1.000<br>0.379<br>0.129<br>1.182<br>0.767<br>0.702                   | 0.0 100<br>-0.3 95<br>-0.8 101<br>-0.2 95<br>1.5 94<br>1.4 93                    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 5.59<br>4.97<br>4.85<br>5.61<br>6.35<br>6.47                 |
| 7 I<br>8 P<br>9 S<br>10<br>11 C<br>12 P<br>13 P | Acenaphthene-d10 Hexachlorocyclopentadiene 2-Fluorobiphenyl Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Fluorene        | 1.000<br>0.308<br>1.836<br>2.393<br>1.484<br>0.154<br>0.300<br>1.577 | 1.000<br>0.306<br>1.859<br>2.370<br>1.471<br>0.114<br>0.274<br>1.535 | 0.0 101<br>0.6 85<br>-1.3 95<br>1.0 93<br>0.9 94<br>26.0# 64<br>8.7 87<br>2.7 92 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 7.73<br>6.54<br>6.81<br>7.53<br>7.79<br>7.90<br>8.06<br>8.60 |
| 15 I<br>16<br>17<br>18<br>19 C                  | Phenanthrene-d10<br>Phenanthrene<br>Anthracene<br>Carbazole<br>Fluoranthene                                                             | 1.000<br>1.423<br>1.447<br>1.113<br>1.465                            | 1.000<br>1.449<br>1.482<br>1.122<br>1.446                            | 0.0 94<br>-1.8 90<br>-2.4 90<br>-0.8 95<br>1.3 87                                | 0.00<br>0.00<br>0.00<br>0.01<br>0.02                 | 10.18<br>10.23<br>10.32<br>10.67<br>12.39                    |
| 20 I<br>21<br>22 S<br>23<br>24                  | Chrysene-d12<br>Pyrene<br>Terphenyl-d14<br>Benzo[a]anthracene<br>Chrysene                                                               | 1.000<br>1.991<br>1.012<br>1.627<br>1.561                            | 1.000<br>2.179<br>1.096<br>1.580<br>1.599                            | 0.0 84<br>-9.4 87<br>-8.3 85<br>2.9 79<br>-2.4 82                                | 0.00<br>-0.01<br>0.00<br>0.00<br>0.00                | 15.08<br>12.79<br>13.22<br>15.07<br>15.12                    |
| 25 I<br>26<br>27<br>28 C<br>29<br>30<br>31      | Perylene-d12 Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene | 1.000<br>1.463<br>1.571<br>1.350<br>1.228<br>1.197<br>1.407          | 1.000<br>1.498<br>1.638<br>1.361<br>1.147<br>1.140                   | 0.0 79 -2.4 76 -4.3 76 -0.8 75 6.6 70 4.8 71 3.0 73                              | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 17.58<br>16.97<br>17.01<br>17.48<br>19.16<br>19.21           |

(#) = Out of Range

(#) = Out of Range SPCC's out = 0 CCC's R13830.D SIM\_PAHC.M Mon May 26 20:09:34 2008 SPCC's out = 0 CCC's out = 0



Instrument Performance Check (DFTPP)

Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID: SW2079-DFTPP

Injection Date: 05/19/08

W040585.D

Injection Time: 15:42

Instrument ID: GCMSW

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relati<br>Abunda |                           | Pass/Fail |
|-----|------------------------------------|------------------|--------------------|---------------------------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 92220            | 34.8               |                           | Pass      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0                | (0.0) a                   | Pass      |
| 69  | Mass 69 relative abundance         | 97517            | 36.8               | 100 C                     | Pass      |
| 70  | Less than 2.0% of mass 69          | 586              | 0.22               | (0.6) a                   | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 127264           | 48.1               |                           | Pass      |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                |                           | Pass      |
| 198 | Base peak, 100% relative abundance | 264832           | 100.0              |                           | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 18662            | 7.0                | e 18548.07 36 6           | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 65664            | 24.8               |                           | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 6305             | 2.4                | on a street of the second | Pass      |
| 441 | Present, but less than mass 443    | 26572            | 10.0               | (77.4) b                  | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | 176952           | 66.8               |                           | Pass      |
| 443 | 17.0 - 23.0% of mass 442           | 34312            | 13.0               | (19.4) <sup>c</sup>       | Pass      |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab            | Lab       | Date     | Time     | Hours  | Client                     |
|----------------|-----------|----------|----------|--------|----------------------------|
| Sample ID      | File ID   | Analyzed | Analyzed | Lapsed | Sample ID                  |
| SW2079-IC2079  | W040587.D | 05/19/08 | 16:35    | 00:53  | Initial cal 1              |
| SW2079-IC2079  | W040588.D | 05/19/08 | 17:02    | 01:20  | Initial cal 2              |
| SW2079-IC2079  | W040589.D | 05/19/08 | 17:28    | 01:46  | Initial cal 3              |
| SW2079-ICC2079 | W040590.D | 05/19/08 | 17:54    | 02:12  | Initial cal 4              |
| SW2079-IC2079  | W040591.D | 05/19/08 | 18:20    | 02:38  | Initial cal 5              |
| SW2079-IC2079  | W040592.D | 05/19/08 | 18:47    | 03:05  | Initial cal 6              |
| SW2079-IC2079  | W040593.D | 05/19/08 | 19:13    | 03:31  | Initial cal 7              |
| SW2079-ICV2079 | W040594.D | 05/19/08 | 19:39    | 03:57  | Initial cal verification 4 |



Job Number: F57525 Account:

TETRSCAI Tetra Tech NUS

Sample:

SW2079-ICC2079

Project:

Sigsbee Marina; NAS Key West, FL

Lab FileID: W040590.D

Response Factor Report MSBNA01

Method : C:\HPCHEM\1\METHODS\SIM\_PAHC.M (RTE Integrator)
Title : PAH's by 8270 SIM
Last Update : Tue May 20 10:59:33 2008

Response via : Initial Calibration

Calibration Files

L1 =W040587.D L2 =W040588.D L3 =W040589.D L4 =W040590.D L5 =W040591.D L6 =W040592.D L7 =W040593.D icv =W040594.D

Compound L1 L2 L3 L4 L5 L6 L7 icv Avg %RSD 

-----ISTD-----1) I Naphthalene-d8 2) Nitrobenzene 0.345 0.354 0.358 0.358 0.348 0.332 0.315 0.344 4.52
3) N-nitroso-di 0.110 0.100 0.111 0.101 0.088 0.094 0.101 8.87
4) Naphthalene 1.092 1.075 1.023 1.013 0.973 0.816 0.795 0.970 12.25
5) 2-Methylnaph 0.736 0.733 0.710 0.701 0.671 0.612 0.562 0.675 9.69
6) 1-Methylnaph 0.703 0.690 0.665 0.649 0.637 0.552 0.537 0.633 10.27

7) I Acenaphthene-d10 -----ISTD-----ISTD-----

15) I Phenanthrene-d10 -----ISTD-----16) Phenanthrene 1.250 1.219 1.171 1.163 1.136 1.002 0.966 1.130 9.45 17) Anthracene 1.244 1.230 1.188 1.175 1.171 1.030 0.967 1.144 9.10 18) Carbazole 1.053 1.058 1.010 0.949 0.873 0.755 0.682 0.912 16.22

---- Quadratic regr., Force(0,0) ---- Coefficient = 0.9999 Response Ratio =  $0.00000 + 1.01539 *A + -0.02651 *A^2$ 

19) Fluoranthene 1.224 1.243 1.192 1.185 1.163 1.040 0.980 1.147 8.59

20) I Chrysene-d12 -----ISTD-----21) Pyrene 1.893 1.868 1.833 1.869 1.777 1.594 1.484 1.760 9.01

22) Terphenyl-dl 1.052 1.045 1.058 1.096 1.069 0.972 0.917 1.030 6.08 23) Benzo[a]anth 1.572 1.542 1.547 1.607 1.638 1.542 1.493 1.563 3.05 24) Chrysene 1.524 1.534 1.546 1.615 1.616 1.505 1.468 1.544 3.55

25) I Perylene-d12 ----ISTD-----

26) Benzo[b]fluo 1.318 1.369 1.421 1.464 1.558 1.474 1.395 1.428 5.50 27) Benzo[k]fluo 1.459 1.466 1.484 1.543 1.604 1.547 1.543 1.521 3.46 28) Benzo[a]pyre 1.205 1.230 1.259 1.333 1.390 1.321 1.296 1.290 4.96 29) Indeno[1,2,3 0.917 0.935 0.968 1.044 1.071 1.045 1.014 0.999 5.96 30) Dibenz[a,h]a 0.911 0.964 0.995 1.054 1.091 1.035 1.023 1.010 5.92 31) Benzo[g,h,i] 1.110 1.164 1.161 1.215 1.241 1.182 1.142 1.173 3.75 \_\_\_\_\_\_\_

(#) = Out of Range ### Number of calibration levels exceeded format ### SIM PAHC.M Tue May 20 11:02:03 2008



#### Instrument Performance Check (DFTPP)

F57525 Job Number:

Account:

TETRSCAI Tetra Tech NUS

Sigsbee Marina; NAS Key West, FL Project:

Sample: Lab File ID: SW2081-DFTPP W040620.D

Injection Date: 05/20/08

Injection Time: 12:24

Instrument ID: GCMSW

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relati<br>Abundar |                     | Pass/Fail |
|-----|------------------------------------|------------------|---------------------|---------------------|-----------|
| 51  | 30.0 - 60.0% of mass 198           | 58333            | 32.3                |                     | Pass      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0                 | (0.0) a             | Pass      |
| 69  | Mass 69 relative abundance         | 62693            | 34.7                |                     | Pass      |
| 70  | Less than 2.0% of mass 69          | 344              | 0.19                | (0.55) a            | Pass      |
| 127 | 40.0 - 60.0% of mass 198           | 83085            | 46.0                |                     | Pass      |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                 |                     | Pass      |
| 198 | Base peak, 100% relative abundance | 180624           | 100.0               |                     | Pass      |
| 199 | 5.0 - 9.0% of mass 198             | 12295            | 6.8                 |                     | Pass      |
| 275 | 10.0 - 30.0% of mass 198           | 43477            | 24.1                |                     | Pass      |
| 365 | 1.0 - 100.0% of mass 198           | 3960             | 2.2                 |                     | Pass      |
| 441 | Present, but less than mass 443    | 16990            | 9.4                 | (77.0) b            | Pass      |
| 442 | 40.0 - 100.0% of mass 198          | 115827           | 64.1                |                     | Pass      |
| 443 | 17.0 - 23.0% of mass 442           | 22063            | 12.2                | (19.0) <sup>c</sup> | Pass      |

- (a) Value is % of mass 69
- (b) Value is % of mass 443
- (c) Value is % of mass 442

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab       | Date     | Time     | Hours  | Client                                     |
|---------------|-----------|----------|----------|--------|--------------------------------------------|
| Sample ID     | File ID   | Analyzed | Analyzed | Lapsed | Sample ID                                  |
|               |           |          |          |        |                                            |
| SW2081-CC2079 | W040621.D | 05/20/08 | 12:40    | 00:16  | Continuing cal 4                           |
| OP25106-MB    | W040624.D | 05/20/08 | 13:38    | 01:14  | Method Blank                               |
| OP25106-BS    | W040625.D | 05/20/08 | 14:04    | 01:40  | Blank Spike                                |
| ZZZZZZ        | W040626.D | 05/20/08 | 14:36    | 02:12  | (unrelated sample)                         |
| ZZZZZZ        | W040627.D | 05/20/08 | 15:02    | 02:38  | (unrelated sample)                         |
| F57485-3      | W040628.D | 05/20/08 | 15:28    | 03:04  | (used for QC only; not part of job F57525) |
| OP25106-MS    | W040629.D | 05/20/08 | 15:54    | 03:30  | Matrix Spike                               |
| OP25106-MSD   | W040630.D | 05/20/08 | 16:21    | 03:57  | Matrix Spike Duplicate                     |
| OP25102-MB    | W040631.D | 05/20/08 | 16:47    | 04:23  | Method Blank                               |
| F57608-2      | W040632.D | 05/20/08 | 17:13    | 04:49  | (used for QC only; not part of job F57525) |
| OP25102-MS    | W040633.D | 05/20/08 | 17:40    | 05:16  | Matrix Spike                               |
| OP25102-MSD   | W040634.D | 05/20/08 | 18:06    | 05:42  | Matrix Spike Duplicate                     |
| ZZZZZZ        | W040635.D | 05/20/08 | 18:32    | 06:08  | (unrelated sample)                         |
| ZZZZZZ        | W040636.D | 05/20/08 | 18:59    | 06:35  | (unrelated sample)                         |
| ZZZZZŻ        | W040637.D | 05/20/08 | 19:25    | 07:01  | (unrelated sample)                         |
| ZZZZZZ        | W040638.D | 05/20/08 | 19:51    | 07:27  | (unrelated sample)                         |
| ZZZZZZ        | W040639.D | 05/20/08 | 20:17    | 07:53  | (unrelated sample)                         |
| F57525-1      | W040640.D | 05/20/08 | 20:43    | 08:19  | KWSM-GW-DRUM-1                             |
| F57525-3      | W040641.D | 05/20/08 | 21:09    | 08:45  | KWSM-BCTF-GW-DRUM-3                        |
|               |           |          |          |        |                                            |



Page 2 of 2

Account:

**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

Sample: Lab File ID:

SW2081-DFTPP W040620.D

Injection Date: 05/20/08

Injection Time: 12:24

Instrument ID: GCMSW

| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | Hours<br>Lapsed | Client<br>Sample ID |
|------------------|----------------|------------------|------------------|-----------------|---------------------|
| ZZZZZZ           | W040642.D      | 05/20/08         | 21:35            | 09:11           | (unrelated sample)  |
| ZZZZZZ           | W040643.D      | 05/20/08         | 22:01            | 09:37           | (unrelated sample)  |
| ZZZZZZ           | W040644.D      | 05/20/08         | 22:27            | 10:03           | (unrelated sample)  |
| ZZZZZZ           | W040645.D      | 05/20/08         | 22:54            | 10:30           | (unrelated sample)  |
| ZZZZZZ           | W040646.D      | 05/20/08         | 23:19            | 10:55           | (unrelated sample)  |
| ZZZZZZ           | W040647.D      | 05/20/08         | 23:45            | 11:21           | (unrelated sample)  |
| ZZZZZZ           | W040648.D      | 05/21/08         | 00:12            | 11:48           | (unrelated sample)  |
|                  |                |                  |                  |                 |                     |

# Continuing Calibration Summary Job Number: F57525

**TETRSCAI Tetra Tech NUS** 

Sample:

Page 1 of 2 SW2081-CC2079

Account: Project:

Sigsbee Marina; NAS Key West, FL

Lab FileID: W040621.D

#### Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\052008\W040621.D

Vial: 2

Acq On : 20 May 2008 12:40 pm Sample : cc2079-4

Operator: rayb Inst : MSBNA01

Misc : op25106, sw2081, 1000, , , 1, 1, water

Multiplr: 1.00

MS Integration Params: RTEINT.P

Method : C:\HPCHEM\1\METHODS\SIM\_PAHC.M (RTE Integrator)
Title : PAH's by 8270 SIM
Last Update : Wed May 21 08:37:11 2008

Response via : Multiple Level Calibration

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 20% Max. Rel. Area : 200%

|                                                 | Compound                                                                                                                                | AvgRF                                                                | CCRF                                                                 | %Dev Area%                                                            | Dev(m:                                                       | in)R.T.                                                      |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| 1 I<br>2 S<br>3 P<br>4<br>5                     | Naphthalene-d8 Nitrobenzene-d5 N-nitroso-di-n-propylamin Naphthalene 2-Methylnaphthalene 1-Methylnaphthalene                            | 1.000<br>0.344<br>0.101<br>0.970<br>0.675<br>0.633                   | 1.000<br>0.355<br>0.095<br>0.970<br>0.672<br>0.633                   | 0.0 76<br>-3.2 78<br>5.9 72<br>0.0 76<br>0.4 76<br>0.0 76             | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 5.37<br>4.77<br>4.66<br>5.38<br>6.09<br>6.21                 |
| 7 I<br>8 P<br>9 S<br>10<br>11 C<br>12 P<br>13 P | Acenaphthene-d10 Hexachlorocyclopentadiene 2-Fluorobiphenyl Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Fluorene        | 1.000<br>0.259<br>1.686<br>1.825<br>1.157<br>0.118<br>0.218<br>1.229 | 1.000<br>0.280<br>1.886<br>1.912<br>1.173<br>0.150<br>0.239<br>1.280 | 0.0 76 -8.1 75 -11.9 77 -4.8 78 -1.4 76 -27.1# 76 -9.6 76 -4.1 80     | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.02<br>0.00 | 7.44<br>6.27<br>6.55<br>7.23<br>7.48<br>7.61<br>7.78<br>8.29 |
| 15 I<br>16<br>17                                | Phenanthrene-d10 Phenanthrene Anthracene                                                                                                | 1.000<br>1.130<br>1.144                                              | 1.000<br>1.153<br>1.188                                              | 0.0 78<br>-2.0 79<br>-3.8 79<br>%Drift                                | 0.00<br>0.00<br>0.00                                         | 9.83<br>9.87<br>9.96                                         |
| 18                                              | Carbazole                                                                                                                               | 20.000                                                               | 21.834                                                               | -9.2 85                                                               | 0.00                                                         | 10.31                                                        |
| 19 C                                            | Fluoranthene                                                                                                                            | - AvgRF<br>1.147                                                     | CCRF<br>1.190                                                        | %Dev<br>-3.7 80                                                       | 0.00                                                         | 12.02                                                        |
| 20 I<br>21 22 S<br>23 24                        | Chrysene-d12 Pyrene Terphenyl-d14 Benzo[a]anthracene Chrysene                                                                           | 1.000<br>1.760<br>1.030<br>1.563<br>1.544                            | 1.000<br>1.812<br>1.076<br>1.632<br>1.650                            | 0.0 78<br>-3.0 80<br>-4.5 79<br>-4.4 78<br>-6.9 80                    | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 14.68<br>12.40<br>12.85<br>14.66<br>14.72                    |
| 25 I<br>26<br>27<br>28 C<br>29<br>30 .<br>31    | Perylene-d12 Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene | 1.000<br>1.428<br>1.521<br>1.290<br>0.999<br>1.010<br>1.173          | 1.000<br>1.524<br>1.654<br>1.389<br>0.950<br>1.005<br>1.150          | 0.0 76<br>-6.7 75<br>-8.7 79<br>-7.7 76<br>4.9 68<br>0.5 70<br>2.0 71 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                 | 17.16<br>16.55<br>16.59<br>17.06<br>18.71<br>18.78<br>19.05  |

Continuing Calibration Summary

Job Number: F57525
Account: TETRSCAI Tetra Tech NUS
Project: Sigsbee Marina; NAS Key West, FL

Page 2 of 2

Sample:

SW2081-CC2079

Lab FileID:

W040621.D

(#) = Out of Range W040591.D SIM\_PAHC.M

SPCC's out = 0 CCC's out = 0

Wed May 21 08:37:55 2008

Sample:

Page 1 of 1

Instrument Performance Check (DFTPP)

F57525 Job Number:

TETRSCAI Tetra Tech NUS Account:

Sigsbee Marina; NAS Key West, FL Project:

SW2082-DFTPP

Lab File ID: W040652.D Instrument ID: GCMSW

| m/e | Ion Abundance Criteria             | Raw<br>Abundance | % Relati<br>Abundar | Pass/Fail Pass      |      |
|-----|------------------------------------|------------------|---------------------|---------------------|------|
| 51  | 30.0 - 60.0% of mass 198           | 86339            | 31.6                |                     |      |
| 68  | Less than 2.0% of mass 69          | 0                | 0.0                 | (0.0) a             | Pass |
| 69  | Mass 69 relative abundance         | 95347            | 34.9                |                     | Pass |
| 70  | Less than 2.0% of mass 69          | 518              | 0.19                | (0.54) a            | Pass |
| 127 | 40.0 - 60.0% of mass 198           | 124325           | 45.5                |                     | Pass |
| 197 | Less than 1.0% of mass 198         | 0                | 0.0                 |                     | Pass |
| 198 | Base peak, 100% relative abundance | 273347           | 100.0               |                     | Pass |
| 199 | 5.0 - 9.0% of mass 198             | 18247            | 6.7                 |                     | Pass |
| 275 | 10.0 - 30.0% of mass 198           | 68549            | 25.1                |                     | Pass |
| 365 | 1.0 - 100.0% of mass 198           | 6112             | 2.2                 |                     | Pass |
| 441 | Present, but less than mass 443    | 29243            | 10.7                | (76.8) b            | Pass |
| 442 | 40.0 - 100.0% of mass 198          | 195683           | 71.6                |                     | Pass |
| 443 | 17.0 - 23.0% of mass 442           | 38065            | 13.9                | (19.5) <sup>c</sup> | Pass |

Injection Date: 05/21/08

Injection Time: 13:57

This check applies to the following Samples, MS, MSD, Blanks, and Standards:

| Lab           | Lab       | Date     | Time     | Hours  | Client             |
|---------------|-----------|----------|----------|--------|--------------------|
| Sample ID     | File ID   | Analyzed | Analyzed | Lapsed | Sample ID          |
|               |           |          |          |        |                    |
| SW2082-CC2079 | W040653.D | 05/21/08 | 14:20    | 00:23  | Continuing cal 5   |
| OP25131-BS    | W040654.D | 05/21/08 | 14:56    | 00:59  | Blank Spike        |
| OP25131-MB    | W040655.D | 05/21/08 | 15:23    | 01:26  | Method Blank       |
| ZZZZZZ        | W040658.D | 05/21/08 | 16:47    | 02:50  | (unrelated sample) |
| ZZZZZZ        | W040665.D | 05/21/08 | 20:22    | 06:25  | (unrelated sample) |
| ZZZZZZ        | W040666.D | 05/21/08 | 20:48    | 06:51  | (unrelated sample) |
| ZZZZZZ        | W040668.D | 05/21/08 | 21:40    | 07:43  | (unrelated sample) |
| ZZZZZZ        | W040669.D | 05/21/08 | 22:06    | 08:09  | (unrelated sample) |
| ZZZZZZ        | W040670.D | 05/21/08 | 22:33    | 08:36  | (unrelated sample) |
| ZZZZZZ        | W040671.D | 05/21/08 | 22:59    | 09:02  | (unrelated sample) |
| OP25106-MB    | W040672.D | 05/21/08 | 23:25    | 09:28  | Method Blank       |
| ZZZZZZ        | W040673.D | 05/21/08 | 23:51    | 09:54  | (unrelated sample) |
| ZZZZZZ        | W040675.D | 05/22/08 | 00:43    | 10:46  | (unrelated sample) |
| ZZZZZZ        | W040676.D | 05/22/08 | 01:09    | 11:12  | (unrelated sample) |
| ZZZZZZ        | W040677.D | 05/22/08 | 01:35    | 11:38  | (unrelated sample) |



<sup>(</sup>a) Value is % of mass 69

<sup>(</sup>b) Value is % of mass 443

<sup>(</sup>c) Value is % of mass 442

Continuing Calibration Summary Job Number: F57525

**TETRSCAI Tetra Tech NUS** 

Sample: Lab FileID:

SW2082-CC2079 W040653.D

Page 1 of 2

Account: Project:

Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\052108\W040653.D

Vial: 2

Acq On : 21 May 2008 2:20 pm Operator: rayb

Sample : cc2079-5

Inst : MSBNA01

: op25131,sw2082,30.0,,,1,1,soil

Multiplr: 1.00

MS Integration Params: RTEINT.P

Method

: C:\HPCHEM\1\METHODS\SIM PAHC.M (RTE Integrator)

Title : PAH's by 8270 SIM
Last Update : Thu May 22 12:56:55 2008 Response via: Multiple Level Calibration

: 0.050 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 20% Max. Rel. Area: 200%

|                                                 | Compound                                                                                                                                | AvgRF                                                                | CCRF                                                                 | %Dev Area%                                                                          | Dev(m                                                        | in)R.T.                                                     |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------|
| 1 I<br>2 S<br>3 P<br>4<br>5                     | Naphthalene-d8<br>Nitrobenzene-d5<br>N-nitroso-di-n-propylamin<br>Naphthalene<br>2-Methylnaphthalene<br>1-Methylnaphthalene             | 1.000<br>0.344<br>0.101<br>0.970<br>0.675<br>0.633                   | 1.000<br>0.359<br>0.104<br>0.933<br>0.670<br>0.620                   | 0.0 91<br>-4.4 94<br>-3.0 94<br>3.8 88<br>0.7 91<br>2.1 89                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00                         | 5.33<br>4.74<br>4.64<br>5.35<br>6.06<br>6.16                |
| 7 I<br>8 P<br>9 S<br>10<br>11 C<br>12 P<br>13 P | Acenaphthene-d10 Hexachlorocyclopentadiene 2-Fluorobiphenyl Acenaphthylene Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Fluorene        | 1.000<br>0.259<br>1.686<br>1.825<br>1.157<br>0.118<br>0.218<br>1.229 | 1.000<br>0.284<br>1.560<br>1.772<br>1.170<br>0.146<br>0.246<br>1.226 | 0.0 90<br>-9.7 90<br>7.5 76<br>2.9 86<br>-1.1 90<br>-23.7# 89<br>-12.8 93<br>0.2 91 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.01<br>0.02<br>0.01 | 7.39<br>6.23<br>6.50<br>7.18<br>7.43<br>7.56<br>7.73        |
| 15 I<br>16<br>17                                | Phenanthrene-d10<br>Phenanthrene<br>Anthracene                                                                                          | 1.000<br>1.130<br>1.144                                              | 1.000<br>1.132<br>1.151                                              | 0.0 92<br>-0.2 92<br>-0.6 91                                                        | 0.00<br>0.00<br>0.01                                         | 9.77<br>9.82<br>9.92                                        |
| 18                                              | Carbazole                                                                                                                               | - Amount<br>20.000                                                   | Calc.<br>20.579                                                      | %Drift<br>-2.9 95                                                                   | 0.02                                                         | 10.26                                                       |
| 19 C                                            | Fluoranthene                                                                                                                            | - AvgRF<br>1.147                                                     | CCRF<br>1.175                                                        | %Dev<br>-2.4 93                                                                     | 0.02                                                         | 11.96                                                       |
| 20 I<br>21 22 S<br>23 24                        | Chrysene-d12 Pyrene Terphenyl-d14 Benzo[a]anthracene Chrysene                                                                           | 1.000<br>1.760<br>1.030<br>1.563<br>1.544                            | 1.000<br>1.690<br>1.038<br>1.577<br>1.615                            | 0.0 98<br>4.0 93<br>-0.8 95<br>-0.9 94<br>-4.6 98                                   | 0.00<br>0.00<br>0.00<br>0.00                                 | 14.63<br>12.35<br>12.80<br>14.61<br>14.67                   |
| 25 I<br>26<br>27<br>28 C<br>29<br>30<br>31      | Perylene-d12 Benzo[b]fluoranthene Benzo[k]fluoranthene Benzo[a]pyrene Indeno[1,2,3-cd]pyrene Dibenz[a,h]anthracene Benzo[g,h,i]perylene | 1.000<br>1.428<br>1.521<br>1.290<br>0.999<br>1.010<br>1.173          | 1.000<br>1.546<br>1.596<br>1.376<br>1.041<br>1.085<br>1.209          | 0.0 95 -8.3 95 -4.9 95 -6.7 95 -4.2 93 -7.4 95 -3.1 93                              | 0.00<br>0.00<br>0.00<br>-0.06<br>-0.06<br>-0.06              | 17.09<br>16.49<br>16.54<br>17.00<br>18.66<br>18.72<br>18.99 |



Continuing Calibration Summary

Job Number: F57525
Account: TETRSCAI Tetra Tech NUS
Project: Sigsbee Marina; NAS Key West, FL

Page 2 of 2

Sample: Lab FileID:

SW2082-CC2079

W040653.D

(#) = Out of Range W040591.D SIM\_PAHC.M

SPCC's out = 0 CCC's out = 0

Thu May 22 12:58:01 2008

## Semivolatile Internal Standard Area Summary

Job Number: F57525

Account: TETRSCAI Tetra Tech NUS

Project: Sigsbee Marina; NAS Key West, FL

Check Std: SR643-CC642 Injection Date: 05/23/08 Lab File ID: R13855.D Injection Time: 11:02

Instrument ID: GCMSR Method: SW846 8270C BY SIM

|                                                      | IS 1<br>AREA     | RT           | IS 2<br>AREA     | RT           | IS 3<br>AREA     | RT            | IS 4<br>AREA     | RT             | IS 5<br>AREA    | RT             |
|------------------------------------------------------|------------------|--------------|------------------|--------------|------------------|---------------|------------------|----------------|-----------------|----------------|
| Check Std                                            | 441885           | 5.61         | 217028           | 7.76         | 327237           | 10.22         | 214114           | 15.12          | 176906          | 17.63          |
| Upper Limit <sup>a</sup><br>Lower Limit <sup>b</sup> | 883770<br>220943 | 6.11<br>5.11 | 434056<br>108514 | 8.26<br>7.26 | 654474<br>163619 | 10.72<br>9.72 | 428228<br>107057 | 15.62<br>14.62 | 353812<br>88453 | 18.13<br>17.13 |
| Lab                                                  | IS 1             |              | IS 2             | <del></del>  | IS 3             |               | IS 4             |                | IS 5            |                |
| Sample ID                                            | AREA             | RT           | AREA             | RT           | AREA             | RT            | AREA             | RT             | AREA            | RT             |
| OP25149-BS                                           | 324297           | 5.61         | 160696           | 7.77         | 236810           | 10.23         | 155926           | 15.13          | 130636          | 17.63          |
| OP25149-MB                                           | 289707           | 5.61         | 142359           | 7.76         | 207473           |               | 128806           | 15.12          | 102017          | 17.62          |
| ZZZZZZ                                               | 314501           | 5.62         | 171033           | 7.78         | 232419           |               | 146743           | 15.13          | 115008          | 17.63          |
| ZZZZZZ                                               | 333069           | 5.62         | 170817           | 7.79         | 245121           | 10.23         | 170707           |                | 146936          | 17.63          |
| ZZZZZZ                                               | 320762           | 5.62         | 166340           | 7.78         | 239217           |               | 161453           |                | 134596          | 17.63          |
| ZZZZZZ                                               | 274127           | 5.62         | 149276           | 7.78         | 201209           | 10.25         | 130615           | 15.13          | 105696          | 17.62          |
| ZZZZZZ                                               | 336419           | 5.62         | 175379           | 7.77         | 249662           | 10.24         | 165848           | 15.12          | 134814          | 17.62          |
| ZZZZZZ                                               | 314386           | 5.62         | 177203           | 7.79         | 229775           | 10.25         | 146960           | 15.13          | 117793          | 17.62          |
| ZZZZZZ                                               | 301582           | 5.62         | 152767           | 7.77         | 227136           | 10.23         | 158000           | 15.12          | 143342          | 17.62          |
| ZZZZZZ                                               | 328142           | 5.62         | 162982           | 7.77         | 242661           | 10.23         | 163332           | 15.12          | 143532          | 17.62          |
| OP25149-MS                                           | 277549           | 5.61         | 137530           | 7.76         | 202841           | 10.21         | 131999           | 15.12          | 116899          | 17.62          |
| OP25149-MSD                                          | 302480           | 5.61         | 150716           | 7.76         | 222396           | 10.21         | 153105           | 15.12          | 141577          | 17.62          |
| ZZZZZZ                                               | 297723           | 5.61         | 148192           | 7.76         | 222424           | 10.21         | 154559           | 15.12          | 138418          | 17.61          |
| ZZZZZZ                                               | 334534           | 5.61         | 166794           | 7.76         | 253155           | 10.21         | 179192           | 15.12          | 163043          | 17.62          |
| F57525-2                                             | 304286           | 5.61         | 150963           | 7.76         | 227418           | 10.21         | 157687           | 15.12          | 142177          | 17.61          |
| ZZZZZZ                                               | 308336           | 5.61         | 151342           | 7.76         | 227399           | 10.21         | 155676           | 15.12          | 132185          | 17.61          |
| ZZZZZZ                                               | 333436           | 5.61         | 164994           | 7.76         | 245147           | 10.21         | 168071           | 15.11          | 143653          | 17.61          |
| ZZZZZZ                                               | 330622           | 5.61         | 162843           | 7.76         | 245025           | 10.21         | 168915           | 15.12          | 145790          | 17.61          |
| F57653-4                                             | 319662           | 5.61         | 159428           | 7.76         | 240148           | 10.21         | 164739           | 15.11          | 139281          | 17.61          |

IS 1 = Naphthalene-d8 IS 2 = Acenaphthene-D10

IS 3 = Phenanthrene-d10

IS 4 = Chrysene-d12

IS 5 = Perylene-d12

(a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



# Semivolatile Internal Standard Area Summary

Job Number: F57525

Account: TETRSCAI Tetra Tech NUS

Project: Sigsbee Marina; NAS Key West, FL

Check Std: SR644-CC642 Injection Date: 05/26/08 Lab File ID: R13881.D Injection Time: 19:40

Instrument ID: GCMSR Method: SW846 8270C BY SIM

|                          | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
|--------------------------|--------|------|--------|------|--------|-------|--------|-------|--------|-------|
|                          | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| Check Std                | 258756 | 5.59 | 128110 | 7.73 | 182572 | 10.18 | 124452 | 15.08 | 114694 | 17.58 |
| Upper Limit <sup>a</sup> | 517512 | 6.09 | 256220 | 8.23 | 365144 | 10.68 | 248904 | 15.58 | 229388 | 18.08 |
| Lower Limit <sup>b</sup> | 129378 | 5.09 | 64055  | 7.23 | 91286  | 9.68  | 62226  | 14.58 | 57347  | 17.08 |
| Lab                      | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
| Sample ID                | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| OP25143-BS <sup>c</sup>  | 279440 | 5.59 | 138776 | 7.73 | 205463 | 10.19 | 147123 | 15.09 | 140609 | 17.58 |
| OP25143-MB               | 287150 | 5.59 | 141408 | 7.73 | 210471 | 10.18 | 153349 | 15.08 | 151415 | 17.58 |
| ZZZZZZ                   | 272392 | 5.59 | 135787 | 7.73 | 204668 | 10.18 | 154839 | 15.08 | 148602 | 17.58 |
| ZZZZZZ                   | 301394 | 5.59 | 148424 | 7.73 | 222351 | 10.18 | 162852 | 15.08 | 155113 | 17.58 |
| ZZZZZZ                   | 299390 | 5.59 | 147728 | 7.73 | 220665 | 10.18 | 164488 | 15.08 | 162128 | 17.58 |
| OP25149-MB               | 234096 | 5.59 | 115886 | 7.73 | 170488 | 10.18 | 118976 | 15.09 | 111330 | 17.58 |
| F57525-4                 | 241208 | 5.59 | 117046 | 7.73 | 173098 | 10.18 | 125424 | 15.08 | 120449 | 17.58 |
| ZZZZZZ                   | 297453 | 5.59 | 145324 | 7.73 | 211728 | 10.18 | 147520 | 15.08 | 137578 | 17.58 |

IS 1 = Naphthalene-d8

IS 2 = Acenaphthene-D10

IS 3 = Phenanthrene-d10

IS 4 = Chrysene-d12

IS 5 = Perylene-d12

<sup>(</sup>a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

<sup>(</sup>b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

<sup>(</sup>c) Insufficient sample for MS/MSD.

# Semivolatile Internal Standard Area Summary

Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Check Std:

SW2081-CC2079

Injection Date:

05/20/08

Lab File ID:

W040621.D

Injection Time: 12:40

12:40

Instrument ID: GCMSW

Method:

SW846 8270C BY SIM

|                          | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
|--------------------------|--------|------|--------|------|--------|-------|--------|-------|--------|-------|
|                          | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| Check Std                | 266669 | 5.37 | 139136 | 7.44 | 202470 | 9.83  | 136794 | 14.68 | 119645 | 17.16 |
| Upper Limit <sup>a</sup> | 533338 | 5.87 | 278272 | 7.94 | 404940 | 10.33 | 273588 | 15.18 | 239290 | 17.66 |
| Lower Limit <sup>b</sup> | 133335 | 4.87 | 69568  | 6.94 | 101235 | 9.33  | 68397  | 14.18 | 59823  | 16.66 |
| Lab                      | IS 1   |      | IS 2   |      | IS 3   |       | IS 4   |       | IS 5   |       |
| Sample ID                | AREA   | RT   | AREA   | RT   | AREA   | RT    | AREA   | RT    | AREA   | RT    |
| OP25106-MB               | 315215 | 5.37 | 165167 | 7.44 | 242609 | 9.83  | 167531 | 14.68 | 152654 | 17.16 |
| OP25106-BS               | 292583 | 5.37 | 150089 | 7.44 | 216013 | 9.83  | 148202 | 14.68 | 133292 | 17.15 |
| ZZZZZZ                   | 293607 | 5.36 | 153540 | 7.44 | 221907 | 9.83  | 157191 | 14.68 | 142683 | 17.15 |
| ZZZZZZ                   | 327357 | 5.37 | 171621 | 7.44 | 248445 | 9.83  | 173199 | 14.68 | 155375 | 17.16 |
| F <b>57485</b> -3        | 327812 | 5.36 | 172177 | 7.44 | 251085 | 9.83  | 171320 | 14.68 | 152814 | 17.16 |
| OP25106-MS               | 332884 | 5.37 | 173446 | 7.44 | 255374 | 9.83  | 176164 | 14.68 | 158888 | 17.16 |
| OP25106-MSD              | 336440 | 5.37 | 177973 | 7.44 | 256948 | 9.83  | 176636 | 14.68 | 159034 | 17.16 |
| OP25102-MB               | 276486 | 5.36 | 146543 | 7.44 | 213158 | 9.82  | 143768 | 14.68 | 125726 | 17.15 |
| F57608-2                 | 303457 | 5.37 | 161868 | 7.45 | 204194 | 9.86  | 126276 | 14.73 | 108514 | 17.23 |
| OP25102-MS               | 277511 | 5.37 | 144844 | 7.45 | 202238 | 9.84  | 135154 | 14.72 | 119370 | 17.20 |
| DP25102-MSD              | 285199 | 5.37 | 145870 | 7.46 | 195086 | 9.87  | 121876 | 14.74 | 98896  | 17.23 |
| ZZZZZZ                   | 304104 | 5.37 | 163189 | 7.44 | 230529 | 9.84  | 149242 | 14.70 | 124415 | 17.18 |
| ZZZZZZ                   | 307376 | 5.37 | 164069 | 7.44 | 228850 | 9.84  | 147668 |       | 121104 | 17.20 |
| ZZZZZZ                   | 351157 | 5.36 | 186123 | 7.44 | 258517 | 9.84  | 163838 | 14.72 | 133227 | 17.21 |
| ZZZZZZ                   | 351423 | 5.37 | 200616 | 7.44 | 289932 | 9.84  | 176546 | 14.70 | 148986 | 17.17 |
| ZZZZZZ                   | 347401 | 5.36 | 192711 | 7.44 | 278797 | 9.84  | 178189 | 14.70 | 155283 | 17.17 |
| F57525-1                 | 362445 | 5.37 | 201531 | 7.44 | 294629 | 9.84  | 194967 |       | 164275 | 17.18 |
| F57525-3                 | 387568 | 5.37 | 202820 | 7.44 | 296643 | 9.84  | 190680 | 14.70 | 159416 | 17.17 |
| ZZZZZZ                   | 398265 | 5.37 | 205219 | 7.44 | 293307 | 9.84  | 187407 |       | 159460 | 17.18 |
| ZZZZZZ                   | 297375 | 5.40 | 193142 | 7.45 | 267051 | 9.84  | 161782 |       | 136449 | 17.18 |
| ZZZZZZ                   | 363477 | 5.37 | 191220 | 7.44 | 272031 | 9.84  | 177717 |       | 148298 | 17.17 |
| ZZZZZZ                   | 360286 | 5.37 | 188861 | 7.44 | 267689 | 9.84  | 177246 |       | 157264 | 17.18 |
| ZZZZZZ                   | 348899 | 5.37 | 181501 | 7.44 | 262598 | 9.84  | 170029 | 2     | 143436 | 17.17 |
| ZZZZZZ                   | 374831 | 5.37 | 195321 | 7.44 | 276188 | 9.84  | 177078 |       | 149594 | 17.17 |
| ZZZZZZ                   | 357565 | 5.37 | 189242 | 7.44 | 272775 | 9.84  | 177139 |       | 139887 | 17.18 |

IS 1 = Naphthalene-d8

IS  $\hat{2}$  = Acenaphthene-D10

IS 3 = Phenanthrene-d10

IS 4 = Chrysene-d12

IS 5 = Perylene-d12

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



#### Semivolatile Internal Standard Area Summary F57525

Job Number:

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Check Std:

SW2082-CC2079

Injection Date: 05/21/08

Lab File ID:

W040653.D

Injection Time: 14:20

Instrument ID: GCMSW

Method:

SW846 8270C BY SIM

|                          | IS 1<br>AREA | RT   | IS 2<br>AREA | RT   | IS 3<br>AREA | RT    | IS 4<br>AREA | RT    | IS 5<br>AREA | RT    |
|--------------------------|--------------|------|--------------|------|--------------|-------|--------------|-------|--------------|-------|
| Check Std                | 319552       | 5.33 | 165682       | 7.39 | 238393       | 9.77  | 170884       | 14.63 | 149462       | 17.09 |
| Upper Limit <sup>a</sup> | 639104       | 5.83 | 331364       | 7.89 | 476786       | 10.27 | 341768       | 15.13 | 298924       | 17.59 |
| Lower Limit b            | 159776       | 4.83 | 82841        | 6.89 | 119197       | 9.27  | 85442        | 14.13 | 74731        | 16.59 |
| Lab                      | IS 1         |      | IS 2         |      | IS 3         |       | IS 4         | ,,    | IS 5         |       |
| Sample ID                | AREA         | RT   | AREA         | RT   | AREA         | RT    | AREA         | RT    | AREA         | RT    |
| OP25131-BS               | 275716       | 5.33 | 143690       | 7.39 | 207136       | 9.77  | 147957       | 14.62 | 132893       | 17.09 |
| OP25131-MB               | 304322       | 5.32 | 158624       | 7.39 | 229810       | 9.77  | 166184       | 14.62 | 151455       | 17.09 |
| ZZZZZZ                   | 314424       | 5.33 | 164788       | 7.39 | 232623       | 9.77  | 160344       | 14.63 | 132855       | 17.09 |
| ZZZZZZ                   | 297564       | 5.34 | 155003       | 7.40 | 215029       | 9.80  | 129134       | 14.66 | 107553       | 17.15 |
| ZZZZZZ                   | 295729       | 5.33 | 154553       | 7.40 | 215340       | 9.79  | 129390       | 14.65 | 110398       | 17.13 |
| ZZZZZZ                   | 347748       | 5.33 | 179850       | 7.40 | 233960       | 9.80  | 126519       | 14.67 | 96938        | 17.16 |
| ZZZZZZ                   | 309145       | 5.34 | 158646       | 7.40 | 216371       | 9.80  | 128174       | 14.67 | 102459       | 17.16 |
| ZZZZZZ                   | 310012       | 5.34 | 157632       | 7.40 | 212852       | 9.80  | 129302       | 14.66 | 105465       | 17.14 |
| ZZZZZZ                   | 354594       | 5.34 | 183363       | 7.40 | 252558       | 9.80  | 156524       | 14.66 | 127299       | 17.15 |
| OP25106-MB               | 317684       | 5.34 | 168920       | 7.40 | 245537       | 9.80  | 180283       | 14.66 | 151504       | 17.14 |
| ZZZZZZ                   | 305194       | 5.34 | 160411       | 7.40 | 238353       | 9.80  | 169198       | 14.66 | 134940       | 17.14 |
| ZZZZZZ                   | 318055       | 5.34 | 163463       | 7.40 | 226247       | 9.80  | 147662       | 14.66 | 122514       | 17.14 |
| ZZZZZZ                   | 346387       | 5.34 | 175914       | 7.40 | 254603       | 9.80  | 177965       | 14.67 | 146031       | 17.16 |
| ZZZZZZ                   | 321065       | 5.34 | 168032       | 7.40 | 240228       | 9.80  | 169359       | 14.67 | 136991       | 17.15 |

= Naphthalene-d8 IS 1

= Acenaphthene-D10 IS 2

IS 3 = Phenanthrene-d10

= Chrysene-d12 IS 4

= Perylene-d12 IS 5

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.



TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Method: FLORIDA-PRO

Matrix: AQ

Samples and QC shown here apply to the above method

| Lab         | Lab       |       |
|-------------|-----------|-------|
| Sample ID   | File ID   | S1 a  |
| F57525-1    | IJ47393.D | 104.0 |
| F57525-3    | IJ47396.D | 102.0 |
| OP25103-BS  | IJ47384.D | 93.0  |
| OP25103-MB  | IJ47385.D | 105.0 |
| OP25103-MB  | OP80997.D | 89.0  |
| OP25103-MS  | IJ47394.D | 111.0 |
| OP25103-MSD | IJ47395.D | 109.0 |
|             |           |       |

Surrogate Compounds Recovery Limits

 $S1 = o ext{-}Terphenyl$ 

38-122%

(a) Recovery from GC signal #1

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Method: FLORIDA-PRO

Matrix: SO

Samples and QC shown here apply to the above method

| Lab         | Lab       |      |
|-------------|-----------|------|
| Sample ID   | File ID   | S1 a |
| F57525-2    | IJ47409.D | 85.0 |
| F57525-4    | IJ47410.D | 80.0 |
| OP25098-BS  | IJ47407.D | 91.0 |
| OP25098-MB  | IJ47408.D | 86.0 |
| OP25098-MS  | IJ47413.D | 79.0 |
| OP25098-MSD | IJ47414.D | 93.0 |
|             |           |      |

Surrogate Compounds Recovery Limits

S1 = o-Terphenyl

47-111%

(a) Recovery from GC signal #1

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Check Std:

GIJ1781-CC1772

Injection Date:

05/19/08

Lab File ID:

IJ47374.D

Injection Time: 20:14

Instrument ID: GCIJ

Method:

FLORIDA-PRO

S1 a RT

| Check Std                                                     |                                                                                         |                                                                                  |                                                             | 5,43                                                 |  |  |  |  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--|--|--|--|
| Lab<br>Sample ID                                              | Lab<br>File ID                                                                          | Date<br>Analyzed                                                                 | Time<br>Analyzed                                            | S1 <sup>a</sup><br>RT                                |  |  |  |  |
| OP25103-BS OP25103-MB ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZ | IJ47384.D<br>IJ47385.D<br>IJ47386.D<br>IJ47387.D<br>IJ47388.D<br>IJ47389.D<br>IJ47390.D | 05/19/08<br>05/20/08<br>05/20/08<br>05/20/08<br>05/20/08<br>05/20/08<br>05/20/08 | 23:56<br>00:18<br>00:40<br>01:02<br>01:24<br>01:46<br>02:08 | 5.43<br>5.43<br>5.43<br>5.43<br>5.43<br>5.43<br>5.43 |  |  |  |  |

Surrogate Compounds

 $S1\,=\,o\text{-}Terphenyl$ 



**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

Check Std:

GIJ1781-CC1772

Injection Date:

05/20/08

Lab File ID: Instrument ID: GCIJ

IJ47391.D

Injection Time: 02:30

Method:

FLORIDA-PRO

S1 a RT

| Check Std        |                |                  |                  | 5.43                  |  |  |  |  |  |
|------------------|----------------|------------------|------------------|-----------------------|--|--|--|--|--|
| Lab<br>Sample ID | Lab<br>File ID | Date<br>Analyzed | Time<br>Analyzed | S1 <sup>a</sup><br>RT |  |  |  |  |  |
| F57525-1         | IJ47393.D      | 05/20/08         | 03:14            | 5.43                  |  |  |  |  |  |
| OP25103-MS       | IJ47394.D      | 05/20/08         | 03:36            | 5.43                  |  |  |  |  |  |
| OP25103-MSD      | IJ47395.D      | 05/20/08         | 03:58            | 5.43                  |  |  |  |  |  |
| F57525-3         | IJ47396.D      | 05/20/08         | 04:20            | 5.43                  |  |  |  |  |  |
| GIJ1781-ECC177   | 72IJ47397.D    | 05/20/08         | 04:42            | 5.43                  |  |  |  |  |  |
|                  |                |                  |                  |                       |  |  |  |  |  |

Surrogate Compounds

S1 = o-Terphenyl

### GC Surrogate Retention Time Summary

Job Number:

Account:

F57525 TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Check Std:

GIJ1782-CC1772

Injection Date: 05/21/08

Lab File ID: Instrument ID: GCIJ

IJ47400.D

Injection Time: 09:26

Method:

FLORIDA-PRO

S1 a RT

| Check Std   |           |          |          | 5.43            |
|-------------|-----------|----------|----------|-----------------|
| Lab         | Lab       | Date     | Time     | S1 <sup>a</sup> |
| Sample ID   | File ID   | Analyzed | Analyzed | RT              |
| OP25098-BS  | IJ47407.D | 05/21/08 | 12:03    | 5.43            |
| OP25098-MB  | IJ47408.D | 05/21/08 | 12:25    | 5.43            |
| F57525-2    | IJ47409.D | 05/21/08 | 12:47    | 5.43            |
| F57525-4    | IJ47410.D | 05/21/08 | 13:10    | 5.43            |
| ZZZZZZ      | IJ47411.D | 05/21/08 | 13:32    | 5.43            |
| F57546-2    | IJ47412.D | 05/21/08 | 13:55    | 5.43            |
| OP25098-MS  | IJ47413.D | 05/21/08 | 14:17    | 5.43            |
| OP25098-MSD | IJ47414.D | 05/21/08 | 14:40    | 5.43            |
| ZZZZZZ      | IJ47415.D | 05/21/08 | 15:02    | 5.43            |

Surrogate Compounds

 $S1 = o ext{-}Terphenyl$ 



Job Number:

F57525

Instrument ID: GCOP

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Check Std: Lab File ID: GOP2105-CC2104

OP80994.D

Injection Date:

05/22/08

Injection Time: 10:59

Method:

FLORIDA-PRO

S1 a RT

Check Std

5.84

S1 a

RT

Lab Sample ID Lab File ID Date Analyzed Time Analyzed

OP25103-MB ZZZZZZ

OP80997.D OP80998.D 05/22/08 12:09 05/22/08 12:32

5.84 5.83

Surrogate Compounds

S1 = o-Terphenyl

Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample<br>OP25098-MS<br>OP25098-MSD<br>F57546-2 | File ID<br>IJ47413.D<br>IJ47414.D<br>IJ47412.D | DF<br>1<br>1 | Analyzed<br>05/21/08<br>05/21/08<br>05/21/08 | By<br>JB<br>JB<br>JB | Prep Date<br>05/16/08<br>05/16/08<br>05/16/08 | Prep Batch<br>OP25098<br>OP25098<br>OP25098 | Analytical Batch<br>GIJ1782<br>GIJ1782<br>GIJ1782 |
|-------------------------------------------------|------------------------------------------------|--------------|----------------------------------------------|----------------------|-----------------------------------------------|---------------------------------------------|---------------------------------------------------|
|                                                 |                                                |              |                                              |                      | •                                             |                                             |                                                   |

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-2, F57525-4

| CAS No. | Compound             | F57546-2<br>mg/kg Q | Spike<br>mg/kg | MS<br>mg/kg | MS<br>% | MSD<br>mg/kg | MSD<br>% | RPD | Limits<br>Rec/RPD |
|---------|----------------------|---------------------|----------------|-------------|---------|--------------|----------|-----|-------------------|
|         | TPH (C8-C40)         | 9.7 U               | 33.5           | 26.6        | 79      | 29.9         | 89       | 12  | 53-107/35         |
| CAS No. | Surrogate Recoveries | MS                  | MSD            | F57:        | 546-2   | Limits       |          |     |                   |
| 84-15-1 | o-Terphenyl          | 79%                 | 93%            | 84%         |         | 47-111%      |          |     |                   |



Page 1 of 1

Matrix Spike/Matrix Spike Duplicate Summary Job Number: F57525

Page 1 of 1

Account:

**TETRSCAI Tetra Tech NUS** 

Project:

Sigsbee Marina; NAS Key West, FL

| Sample         File ID         DF         Analyzed         By         Prep Date           OP25103-MS         IJ47394.D         1         05/20/08         JB         05/19/08           OP25103-MSD         IJ47395.D         1         05/20/08         JB         05/19/08           F57525-1         IJ47393.D         1         05/20/08         JB         05/19/08 | Prep Batch Analytical Batch OP25103 GIJ1781 OP25103 GIJ1781 OP25103 GIJ1781 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-1, F57525-3

| CAS No. | Compound             | F57525-1<br>mg/l | Q | Spike<br>mg/l | MS<br>mg/l | MS<br>% | MSD<br>mg/l | MSD<br>% | RPD | Limits<br>Rec/RPD |
|---------|----------------------|------------------|---|---------------|------------|---------|-------------|----------|-----|-------------------|
|         | TPH (C8-C40)         | 0.389            |   | 1.63          | 2.25       | 114*    | 2.15        | 108      | 5   | 54-110/28         |
| CAS No. | Surrogate Recoveries | MS               |   | MSD           | F57        | 525-1   | Limits      |          |     |                   |
| 84-15-1 | o-Terphenyl          | 111%             |   | 109%          | 104        | %       | 38-122%     | ,<br>D   |     |                   |



Blank Spike Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample<br>OP25098-BS | File ID<br>IJ47407.D | DF<br>1 | Analyzed 05/21/08 | By<br>JB | Prep Date 05/16/08 | Prep Batch<br>OP25098 | Analytical Batch<br>GIJ1782 |
|----------------------|----------------------|---------|-------------------|----------|--------------------|-----------------------|-----------------------------|
| 1                    |                      |         |                   |          |                    |                       |                             |

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-2, F57525-4

Spike **BSP BSP** CAS No. Compound mg/kg mg/kg % Limits TPH (C8-C40) 28.3 23.9 84 53-107

CAS No. Surrogate Recoveries BSP Limits 84-15-1 o-Terphenyl 47-111% 91%

Blank Spike Summary Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

| Sample     | File ID   | DF | Analyzed | By | Prep Date 05/19/08 | Prep Batch | Analytical Batch |
|------------|-----------|----|----------|----|--------------------|------------|------------------|
| OP25103-BS | IJ47384.D | 1  | 05/19/08 | JB |                    | OP25103    | GIJ1781          |
|            |           |    |          |    |                    |            |                  |

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-1, F57525-3

Spike BSP **BSP** CAS No. Compound mg/lmg/l % Limits TPH (C8-C40) 0.85 0.80394 54-110

CAS No. Surrogate Recoveries **BSP** Limits 84-15-1 38-122% o-Terphenyl

Page 1 of 1

Method Blank Summary

Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample File ID

OP25098-MB

IJ47408.D

DF 1

Analyzed 05/21/08

Ву JB

Prep Date 05/16/08

OP25098

Prep Batch

**Analytical Batch** 

GIJ1782

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-2, F57525-4

CAS No.

Compound

Result

RL

MDL

5.7

Units Q

TPH (C8-C40)

ND

8.3

mg/kg

CAS No.

Surrogate Recoveries

Limits

84-15-1

o-Terphenyl

47-111%

Method Blank Summary

Page 1 of 1

Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample OP25103-MB File ID IJ47385.D

DF 1 Analyzed I 05/20/08 J

By Pro

Prep Date 05/19/08

Prep Batch

Analytical Batch

OP25103 GIJ1781

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-1, F57525-3

CAS No.

Compound

Result

RL

MDL

Units Q

TPH (C8-C40)

ND

0.25

0.17

mg/l

CAS No.

Surrogate Recoveries

Limits

84-15-1

o-Terphenyl

105%

38-122%

Job Number:

F57525

Account:

TETRSCAI Tetra Tech NUS

Project:

Sigsbee Marina; NAS Key West, FL

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch OP25103-MB OP80997.D 1 05/22/08 JB 05/19/08 OP25103 GOP2105

The QC reported here applies to the following samples:

Method: FLORIDA-PRO

F57525-1, F57525-3

CAS No. Compound

Result

RL

MDL

Units Q

TPH (C8-C40)

ND

0.25

0.17 mg/l

CAS No.

Surrogate Recoveries

Limits

84-15-1

o-Terphenyl

89%

38-122%

Page 1 of 1

**Initial Calibration Summary** 

Job Number: F57525

**TETRSCAI Tetra Tech NUS** Account:

Sigsbee Marina; NAS Key West, FL Project:

GIJ1772-ICC1772 Sample:

IJ46879.D Lab FileID:

Response Factor Report FID 1

Method : C:\HPCHEM\1\METHODS\FL PRO F.M (Chemstation Integrator)

Title : TPH by FL\_PRO
Last Update : Mon May 05 13:33:36 2008

Response via: Initial Calibration

Calibration Files

255 =IJ46876.D 340 =IJ46877.D 680 =IJ46878.D 1020=IJ46879.D 1360=IJ46880.D 1700=IJ46881.D 2125=IJ46882.D 4250=IJ46883.D

Compound 255 · 340 680 1020 1360 1700 2125 4250 Avg %RSD

1) O-TERPHENYL 3.650 3.617 3.546 3.555 3.495 2.834 2) TPH (C8-C40) 3.632 3.435 3.400 3.354 3.286 2.654 3.280 3.265 3.288 E4 8.60

(#) = Out of Range ### Number of calibration levels exceeded format ###

Tue May 06 09:29:38 2008 FL PRO F.M

#### Continuing Calibration Summary

Sample:

Page 1 of 1 GIJ1781-CC1772

Job Number: F57525 Account:

**TETRSCAI Tetra Tech NUS** 

Lab FileID:

IJ47374.D

Project:

Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0519PRO\IJ47374.D

Vial: 28

Acq On : 19 May 2008 8:14 pm Operator: julieb

Sample : cc1772-1020

Inst : FID 1 Multiplr: 1.00

Misc : op25098, gij1781, 30.0, , , 1, 1, soil

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via: Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25%

Compound

Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_

1 S O-TERPHENYL 60.000 64.646 -7.7 105 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1235.831 -21.2 119 0.00 2.24-10.83 2 H TPH (C8-C40)

(#) = Out of Range (#) = Out of Range SPCC's out = 0 CCC' IJ46879.D FL\_PRO\_F.M Wed May 21 09:19:48 2008

SPCC's out = 0 CCC's out = 0

**TETRSCAI Tetra Tech NUS** 

Sample:

GIJ1781-CC1772

Account: Project:

Sigsbee Marina; NAS Key West, FL

IJ47382.D Lab FileID:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0519PRO\IJ47382.D

Vial: 35

Acq On : 19 May 2008 11:12 pm

Operator: julieb

Sample : cc1772-1020

Inst : FID 1

Misc : op25098, gij1781, 30.0, , , 1, 1, soil

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

:

0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25%

Compound

Max. Rel. Area: 150%

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_

1 S O-TERPHENYL 60.000 63.821 -6.4 103 0.00 5.38- 5.48 2 H TPH (C8-C40) 1020.000 1056.205 -3.5 102 0.00 2.24-10.83 2 H TPH (C8-C40)

SPCC's out = 0 CCC's out = 0

(#) = Out of Range

#) = Out of Range SPCC's out = 0 CCC's 1J46879.D  $FL_PRO_F.M$  Wed May 21 09:19:48 2008

Continuing Calibration Summary

Page 1 of 1

Job Number: F57525

**TETRSCAI Tetra Tech NUS** 

Sample:

GIJ1781-CC1772

Account: Project:

Sigsbee Marina; NAS Key West, FL

Lab FileID: II47391.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0519PRO\IJ47391.D

Vial: 43

Acq On : 20 May 2008 2:30 am Operator: julieb

Sample : cc1772-1020

Inst : FID 1

Misc : op25103,gij1781,1000,,,1,1,water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO
Last Update : Fri May 16 11:20:03 2008

Response via : Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window \_\_\_\_\_\_

1 S O-TERPHENYL 60.000 63.878 -6.5 103 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1045.392 -2.5 100 0.00 2.24-10.83

\_\_\_\_\_

SPCC's out = 0 CCC's out = 0

(#) = Out of Range (#) = Out of Range SPCC's out = 0 CCC' IJ46879.D FL\_PRO\_F.M Wed May 21 09:19:48 2008

TETRSCAI Tetra Tech NUS

Sample:

GIJ1781-ECC1772

Account: Project:

Sigsbee Marina; NAS Key West, FL

IJ47397.D Lab FileID:

Evaluate Continuing Calibration Report

Data File: C:\HPCHEM\1\DATA\0519PRO\IJ47397.D

Vial: 48

Acq On : 20 May 2008 4:42 am Operator: julieb

Sample : ecc1772-1020

Inst : FID 1

: op25103,gij1781,1000,,,1,1,water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

Min. RRF :

0.000 Min. Rel. Area: 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window \_\_\_\_\_

1 S O-TERPHENYL 60.000 65.501 -9.2 106 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1077.433 -5.6 104 0.00 2.24-10.83 2 H TPH (C8-C40)

·\_\_\_\_\_

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

IJ46879.D FL PRO F.M Wed May 21 09:19:48 2008

Continuing Calibration Summary

Page 1 of 1

Job Number: F57525 Account:

**TETRSCAI Tetra Tech NUS** 

Sample: Lab FileID:

GII1782-CC1772 IJ47400.D

Project:

Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0521PRO\IJ47400.D

Vial: 2

Acg On : 21 May 2008

9:26 am

Operator: julieb

Sample : cc1772-1020

Misc : op25103,gij1782,1000,,,1,1,water

Inst : FID 1 Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO
Last Update : Fri May 16 11:20:03 2008

Response via : Multiple Level Calibration

Min. RRF : 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min Max. RRF Dev : 25% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window

Compound \_\_\_\_\_

1 S O-TERPHENYL 60.000 63.329 -5.5 102 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1050.784 -3.0 101 0.00 2.24-10.83 2 H TPH (C8-C40)

\_\_\_\_\_

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

(#) = Out of Range SPCC's out = 0 CCC' IJ46879.D FL\_PRO\_F.M Thu May 22 09:42:49 2008

**Continuing Calibration Summary** 

Job Number: F57525

TETRSCAI Tetra Tech NUS

Sample:

GII1782-CC1772

Account: Project:

Sigsbee Marina; NAS Key West, FL

Lab FileID: IJ47401.D

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0521PRO\IJ47401.D

Vial: 3

Acq On : 21 May 2008 Sample : cc1772-340

9:48 am

Operator: julieb

Inst : FID 1

: op25103,gij1782,1000,,,1,1,water Misc

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via : Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Compound

Max. RRF Dev : 25% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_\_\_\_\_\_\_\_

Page 1 of 1

1 S O-TERPHENYL 20.000 22.062 -10.3 105 0.00 5.38-5.48 2 H TPH (C8-C40) 340.000 379.266 -11.5 107 0.00 2.24-10.83

\_\_\_\_\_

(#) = Out of Range

SPCC's out = 0 CCC's out = 0

(#) = Out of Range SPCC'S OUT = 0 CCC' IJ46877.D FL\_PRO\_F.M Thu May 22 09:43:04 2008

Continuing Calibration Summary

Job Number: F57525

TETRSCAI Tetra Tech NUS

Sample:

GI11782-CC1772

Account: Project:

Sigsbee Marina; NAS Key West, FL

IJ47405.D Lab FileID:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0521PRO\IJ47405.D

Vial: 6

Acq On : 21 May 2008 11:18 am Sample : cc1772-1020

Operator: julieb

Inst : FID 1

Misc

: op25103,gij1782,1050,,,1,1,water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL PRO F.M (Chemstation Integrator)

: TPH by FL PRO

Last Update : Fri May 16 11:20:03 2008 Response via: Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

Compound

Amount Calc.

%Drift Area% Dev(min)RT Window \_\_\_\_\_

1 S O-TERPHENYL 60.000 67.203 -12.0 109 0.00 5.38- 5.48 2 H TPH (C8-C40) 1020.000 1121.228 -9.9 108 0.00 2.24-10.83 \_\_\_\_\_\_

SPCC's out = 0 CCC's out = 0

(#) = Out of Range IJ46879.D FL\_PRO\_F.M Thu May 22 09:42:49 2008

Continuing Calibration Summary
Job Number: F57525

TETRSCAI Tetra Tech NUS

Sample:

GII1782-CC1772

Account: Project:

Sigsbee Marina: NAS Key West, FL

IJ47416.D Lab FileID:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\1\DATA\0521PRO\IJ47416.D

Vial: 16

Acq On : 21 May 2008 Sample : cc1772-1020 3:25 pm Operator: julieb

Inst : FID 1

Misc : op25098,gij1782,30.2,,,1,2,soil

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\1\METHODS\FL\_PRO\_F.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Fri May 16 11:20:03 2008 Response via: Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Compound

Max. RRF Dev : 25% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_

1 S O-TERPHENYL 60.000 66.354 -10.6 107 0.00 5.38-5.48 2 H TPH (C8-C40) 1020.000 1113.567 -9.2 107 0.00 2.24-10.83

\_\_\_\_\_

(#) = Out of Range (#) = Out of Range SPCC's out = 0 CCC's IJ46879.D  $FL_PRO_F.M$  Thu May 22 09:42:49 2008

SPCC's out = 0 CCC's out = 0

**Initial Calibration Summary** 

Page 1 of 1

Job Number: F57525

TETRSCAI Tetra Tech NUS

Sample:

GOP2104-ICC2104

Account: Project:

Sigsbee Marina; NAS Key West, FL

Lab FileID:

OP80956.D

Response Factor Report FID 2

Method

: C:\HPCHEM\2\METHODS\FL PRO R.M (Chemstation Integrator)

Title

: TPH by FL PRO

Last Update : Thu May 22 14:48:49 2008

Response via: Initial Calibration

Calibration Files

255 = OP80953.D 340 = OP80954.D 680 = OP80955.D 1020 = OP80956.D

1360=OP80957.D 1700=OP80958.D 2125=OP80959.D 4250=OP80960.D

255 340 680 1020 1360 1700 2125 4250 Avg %RSD

Compound

\_\_\_\_\_

1) O-TERPHENYL 1.932 1.948 1.916 1.900 1.901 1.991 1.932 E4 1.78 2) TPH (C8-C40) 1.818 1.825 1.776 1.758 1.768 1.837 1.789 1.755 1.791 E4 1.79

(#) = Out of Range ### Number of calibration levels exceeded format ###

FL PRO R.M

Thu May 22 15:00:37 2008



Continuing Calibration Summary

Page 1 of 1

Job Number: F57525

TETRSCAI Tetra Tech NUS

Sample: Lab FileID: GOP2105-CC2104 OP80994.D

Account: Project:

Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\0522PRO\OP80994.D

Vial: 2

Acq On : 22 May 2008 10:59 am

Operator: julieb

Sample

: cc2104-1020

Inst : FID 2

Misc

: op25109,gop2105,30.0,,,1,1,soil

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\2\METHODS\FL\_PRO\_R.M (Chemstation Integrator)
Title : TPH by FL PRO

Last Update : Thu May  $2\overline{2}$  14:48:49 2008 Response via : Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Compound

Max. RRF Dev : 25% Max. Rel. Area : 150%

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_\_

1 S O-TERPHENYL 60.000 64.357 -7.3 109 0.00 5.75-5.91 2 H TPH (C8-C40) 1020.000 1143.978 -12.2 114 0.00 2.31-11.59

\_\_\_\_\_

(#) = Out of Range OP80956.D FL\_PRO\_R.M Thu May 22 15:09:53 2008

SPCC's out = 0 CCC's out = 0

**Continuing Calibration Summary** Job Number: F57525

TETRSCAI Tetra Tech NUS

Sample: Lab FileID: GOP2105-CC2104

OP80995.D

Account: Project:

Sigsbee Marina; NAS Key West, FL

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\0522PRO\OP80995.D

Vial: 3

Acq On : 22 May 2008 11:21 am

Operator: julieb

Sample

: cc2104-340

Inst : FID 2

Misc

: op25109,gop2105,30.0,,,1,1,soil

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\2\METHODS\FL\_PRO\_R.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Thu May  $2\overline{2}$  14:48:49 2008 Response via: Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev: 25% Max. Rel. Area: 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window

\_\_\_\_\_\_

1 S O-TERPHENYL 20.000 21.221 -6.1 105 0.00 5.75-5.91 2 H TPH (C8-C40) 340.000 403.692 -18.7 116 0.00 2.31-11.59

\_\_\_\_\_\_

(#) = Out of Range (#) = 0ut of kange SPCC'S OUL = 0 CCC'  $OP80954.D FL_PRO_R.M$  Thu May 22 15:09:39 2008

SPCC's out = 0 CCC's out = 0

Continuing Calibration Summary

Job Number: F57525

Account:

TETRSCAI Tetra Tech NUS

Sample: Lab FileID: GOP2105-CC2104

OP80999.D

Sigsbee Marina; NAS Key West, FL Project:

Evaluate Continuing Calibration Report

Data File : C:\HPCHEM\2\DATA\0522PRO\OP80999.D

Vial: 6

Acq On : 22 May 2008 12:54 pm Sample : cc2104-1020

Operator: julieb

Inst : FID 2

Misc : op25103,gop2105,1050,,,1,1,water

Multiplr: 1.00

IntFile : events.e

Method : C:\HPCHEM\2\METHODS\FL\_PRO\_R.M (Chemstation Integrator)
Title : TPH by FL\_PRO

Last Update : Thu May  $2\overline{2}$  14:48:49 2008 Response via: Multiple Level Calibration

: 0.000 Min. Rel. Area : 50% Max. R.T. Dev 0.50min

Max. RRF Dev : 25% Max. Rel. Area : 150%

Compound

Amount Calc. %Drift Area% Dev(min)RT Window \_\_\_\_\_

.\_\_\_\_\_

1 S O-TERPHENYL 60.000 65.893 -9.8 112 0.00 5.75-5.91 2 H TPH (C8-C40) 1020.000 1150.985 -12.8 115 0.00 2.31-11.59

SPCC's out = 0 CCC's out = 0

(#) = Out of Range OP80956.D FL\_PRO\_R.M Thu May 22 15:09:53 2008